
exercises 7
Exercise 7.1. Consider weights

w1 = 0.2993 and w2 = 0.7007,

and the following matrices A1, A2 and vectors b1, b2

A1 =
[

0.4 −0.3733
0.06 0.6

]
and b1 =

[
0.3533

0.0

]

A2 =
[

−0.8 −0.1867
0.1371 0.8

]
and b2 =

[
1.1
0.1

]

Now we will define a Markov chain on R2 and we will denote our chain with (xk)k≥0. For
this, consider two deterministic functions:

f1(x) = A1x + b1

f2(x) = A2x + b2.

Simulate the following Markov process

in ∼ Discrete(w1, w2)
xn+1 = fin(xn)

for 1 ≤ n ≤ N where N = 10000. You can use x0 = [0, 0]>. Plot a scatter plot of the
Markov chain. For a pretty plot, you can use the following plotting function

1 plt.scatter(x[0, 20:k], x[1, 20:k], s=0.1, color = [0.8, 0, 0])
2 plt.gca().spines['top'].set_visible(False)
3 plt.gca().spines['right'].set_visible(False)
4 plt.gca().spines['bottom'].set_visible(False)
5 plt.gca().spines['left'].set_visible(False)
6 plt.gca().set_xticks([])
7 plt.gca().set_yticks([])
8 plt.gca().set_xlim(0, 1.05)
9 plt.gca().set_ylim(0, 1)
10 plt.show()

As you can see, I chose burnin as 20 iterations here. Be careful about matrix products in
Python: A*x is not performing matrix product, you should use A@x where A is a 2 × 2
matrix and x is a 2 × 1 vector. Try to simulate from this system until you see a nice picture.

Exercise 7.2. Consider the real-valued Markov kernel

K(xn|xn−1) = N (xn; axn−1, 1).

Show that this kernel satisfies the detailed balance condition w.r.t.

p?(x) = N
(

x; 0,
1

1 − a2

)
.

Exercise 7.3. Show that the kernel in the previous exercise satisfies

p?(x) = lim
n→∞

K(n)(x|x′).



In other words, regardless from where we start, the kernel would converge to the stationary
distribution.

Hint: Start from writing the recursions xn+1 = axn + εn where εn ∼ N (0, 1) and
x0 = x′. Try to first derive the expression of xn+1 in terms of x0. Compute the mean and
the variance of xn+1, then take the limit n → ∞.

Exercise 7.4. Sample from the banana density of Example 5.10 using MH sampler:

p(x, y) ∝ exp
(

−x2

10 − y4

10 − 2(y − x2)2
)

.

1. Use a symmetric random walk proposal for each dimension

q(x′, y′|x, y) = N (x′; x, σ2
q )N (y′; y, σ2

q ).

Compute your acceptance ratio using log density and accept if log U < log r (for
practice).

2. Use the Metropolis-adjusted Langevin algorithm proposal (MALA). Surprisingly,
this may work worse than random walk for this problem.

Use the following snippet for 2D plotting:
1 x_bb = np.linspace(-4, 4, 100)
2 y_bb = np.linspace(-2, 6, 100)
3 X_bb, Y_bb = np.meshgrid(x_bb, y_bb)
4 Z_bb = np.exp(banana(X_bb, Y_bb)) # your banana function
5 plt.subplot(1, 3, 1)
6 plt.contourf(X_bb, Y_bb, Z_bb, 100, cmap='RdBu')
7 plt.subplot(1, 3, 2)
8 plt.hist2d(samples_RW[0, burnin:n], samples_RW[1, burnin:n], 100, cmap

='RdBu', range=[[-4, 4], [-2, 6]],
density=True)

9 plt.title('Random Walk Metropolis')
10 plt.subplot(1, 3, 3)
11 plt.hist2d(samples_Langevin[0, burnin:n], samples_Langevin[1, burnin:n

], 100, cmap='RdBu', range=[[-4, 4]
, [-2, 6]], density=True)

12 plt.title('Metropolis Adjusted Langevin Algorithm')
13 plt.show()


	Exercises 7

