
solutions 8
Solution 8.1. This is a straightforward adaptation of the proofs we have seen already. Let us
recall that for p?(x) = N (x; µ, σ2), the unadjusted Langevin algorithm of the form given
in the exercise takes the form

Xn+1 = Xn − γ
Xn − µ

σ2 +
√

2γβ−1Wn+1.

Let

a = 1 − γ

σ2 , b = γ

σ2 µ.

The algorithm then takes the form

Xn+1 = aXn + b +
√

2γβ−1Wn+1.

We can write now the iterates beginning at x0 as

x1 = ax0 + b +
√

2γβ−1W1,

x2 = a2x0 + ab + a
√

2γβ−1W1︸ ︷︷ ︸
ax1

+b +
√

2γβ−1W2,

x3 = a3x0 + a2b + a2
√

2γβ−1W1 + ab + a
√

2γβ−1W2︸ ︷︷ ︸
ax2

+b +
√

2γβ−1W3,

...

xn = anx0 +
n−1∑
k=0

akb +
n−1∑
k=0

ak
√

2γβ−1Wn−k.

We can compute the expected value

E[Xn] = anx0 +
n−1∑
k=0

akb,

since Wk are zero mean. As n → ∞, we have

µ∞ = lim
n→∞

E[Xn] =
∞∑

k=0
akb = b

1 − a
= µ.

since 0 < a < 1. The variance of the iterates as n → ∞ can also be computed. Note that
for finite n, we have

var(xn) = var
(

n−1∑
k=0

ak
√

2γβ−1Wk

)
,

= 2γβ−1
n−1∑
k=0

(a2)k,

= 2γβ−1 1 − a2n

1 − a2 .

Student’s t samples for ULA and MALA

Therefore, we obtain the limiting variance as

lim
n→∞

var(xn) = 2γβ−1 1
1 − a2

= 2γβ−1 1
1 −

(
1 − γ

σ2

)2

= 2γβ−1 1
2γ
σ2 − γ2

σ4

,

= 2σ4

β(2σ2 − γ) .

Therefore, we obtained the target measure of ULA as

pγ,β
? (x) = N

(
x; µ,

2σ4

β(2σ2 − γ)

)
,

which is different than p?. The target will concentrate on µ as β → ∞.

Solution 8.2. The code is given below. Note that we have implemented the unadjusted
Langevin algorithm and the Metropolis-adjusted Langevin algorithm for the Student’s
t-distribution. For this, we need to derive the gradient ∇ log p(x), which in this case is

given as

∇ log p(x) = −x(ν + 1)
ν + x2 .

Using this, we can code both methods. The code is given below.
The ULA can be unstable and underperform depending on the context. For example,

in this context, when ν = 0.5, it does not work well. However, MALA works well for this
specific value of ν = 0.5. See Figure for reference.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import scipy.special as sp
4
5 rng = np.random.default_rng(1234)
6
7 def grad_log_student_t(x, nu):
8 return - (x * (nu + 1)) / (nu + x**2)
9
10 def log_student_t(x, nu):
11 return - ((nu + 1) / 2) * np.log(1 + x**2 / nu)
12
13 def student_t(x, nu):
14 return sp.gamma((nu + 1) / 2) / (sp.gamma(nu / 2) * np.sqrt(nu *

np.pi)) * (1 + x**2 / nu)**(-(
nu + 1) / 2)

15
16 T = 100000
17 burnin = 1000
18
19 nu = 0.5
20
21 gam = 1
22
23 x_ula = np.zeros(T)
24 x_ula[0] = 0
25 x_mala = np.zeros(T)
26 x_mala[0] = 0
27
28 def log_MALA_kernel(x_prop, x, gam, nu):
29 return - (x_prop - x - gam * grad_log_student_t(x, nu))**2 / (4 *

gam)
30
31
32 acc = 0
33
34 for t in range(1, T):
35
36 x_ula[t] = x_ula[t-1] + gam * grad_log_student_t(x_ula[t-1], nu) +

np.sqrt(2*gam) * rng.normal(0,
1)

37
38 u = np.random.rand()
39 x_mala_prop = x_mala[t-1] + gam * grad_log_student_t(x_mala[t-1],

nu) + np.sqrt(2*gam) * rng.
normal(0, 1)

40
41 log_alpha = log_MALA_kernel(x_mala[t-1], x_mala_prop , gam, nu) -

log_MALA_kernel(x_mala_prop ,

x_mala[t-1], gam, nu) \
42 + log_student_t(x_mala_prop , nu) - log_student_t(

x_mala[t-1], nu)
43
44 if np.log(u) < log_alpha:
45 x_mala[t] = x_mala_prop
46 acc += 1
47 else:
48 x_mala[t] = x_mala[t-1]
49
50 print("Acceptance rate: ", acc / T)
51
52 xx = np.linspace(-10, 10, 1000)
53
54 plt.figure()
55 plt.subplot(2, 2, 1)
56 plt.plot(x_ula[burnin:], 'b')
57 plt.title('ULA')
58 plt.subplot(2, 2, 2)
59 plt.plot(x_mala[burnin:], 'b')
60 plt.title('MALA')
61 plt.subplot(2, 2, 3)
62 plt.hist(x_ula[burnin:], bins=1000, density=True)
63 plt.plot(xx, student_t(xx, nu), 'r')
64 # set subplot limit to -5, 5 (xlim)
65 plt.xlim([-10, 10])
66 plt.subplot(2, 2, 4)
67 plt.hist(x_mala[burnin:], bins=1000, density=True)
68 plt.plot(xx, student_t(xx, nu), 'r')
69 plt.xlim([-10, 10])
70 plt.show()

Solution 8.3. We summarise the solutions as follows.

1. Note that accesing only uniform random numbers in this setting, we need to use the
inversion sampler for exponentials. Recall that then, we can draw

• Xk = −Y −1
k−1 log(1 − Uk) where Uk ∼ Unif(0, 1)

• Yk = −X−1
k log(1 − Uk) where Uk ∼ Unif(0, 1)

2. We need to derive that the joint p(x, y) ∝ exp(−xy) is implied by the full condition-
als in the form we had.
In order to do this, we will first derive a marginal:

p(x) =
∫

p(x, y)dy =
∫

exp(−xy)dy = 1
x

exp(−xy)
∣∣∣∣∣
y=∞

y=0
= 1

x
.

Since we have

p(y|x) = p(x, y)
p(x) ,

we can see that using p(x|y)p(x) = p(x, y) implies that p(x|y) ∝ x exp(−xy) which
is the exponential density. Similar argument holds for p(x|y) which means that the
Gibbs sampler would target p(x, y) ∝ exp(−xy).

3. Try to see whether the unnormalised density is integrable or not, as this is the
condition for the density to exist. In other words, we should check∫

R2
exp(−xy)dxdy < ∞.

But we will see that this is not the case. To see this, notice∫
R2

+

exp(−xy)dxdy =
∫
R+

1
y

dy = ∞

This means that Gibbs sampler can target a measure that is not a valid density. This
is why it is important to check the implied joint from given full conditionals to
determine whether the Gibbs sampler is doing something valid.

4. Let us assume full conditionals are truncated to [0, 1]. Then we can refine them, i.e.,

p(x|y) = x exp(−xy)∫ 1
0 x exp(−xy)dy

= x exp(−xy)
1 − e−x

.

Similar argument goes again for p(y|x). There is one problem remaining that is how
to sample from p(x|y) of this form.
One can derive the conditional CDF (show this)

FY |X(y|x) = 1 − e−xy

1 − e−x
.

Then, we can sample from this conditional CDF using the inverse CDF method. In
particular, we can sample from p(x|y) using (derive the inverse and show this)

Y = −1
x

log(1 − U(1 − e−x)).

Solution 8.4. Note that for rejection sampling, we have

αrejection(x) = p(x)
Mq(x) ,

where

M = sup
z

p(z)
q(z) .

Let us rewrite this:

αrejection(x) = p(x)/q(x)
supz p(z)/q(z) .

On the other hand, for independent MH, we have

αMH(x) = min
{

1,
p(x)q(x′)
p(x′)q(x)

}
.

First of all, αrejection(x) ≤ 1. Therefore, we just only need to check the ratio. To see this, see
that

p(x)/q(x)
p(x′)/q(x′) ≥ p(x)/q(x)

supz p(z)/q(z) ,

as sup is always a bigger number.

