exercises 8

Exercise 8.1. Consider the following unadjusted Langevin algorithm:

$$
X_{n+1} = X_n + \gamma \nabla \log p_{\star}(X_n) + \sqrt{2\gamma \beta^{-1}} W_{n+1},
$$

where $W_{n+1} \sim \mathcal{N}(0, 1)$ and $\gamma > 0$ is the step size. Assume that p_{\star} is a Gaussian:

$$
p_{\star}(x) = \mathcal{N}(x; \mu, \sigma^2),
$$

where $\mu \in \mathbb{R}^d$ and $\sigma^2 > 0$. Derive the limiting distribution $p_{\star}^{\gamma,\beta}(x)$ of X_n as $n \to \infty$. Discuss any constraints on γ for convergence and the limit $\beta \to \infty$.

Exercise 8.2. Let

$$
p_{\star}(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\,\Gamma(\frac{\nu}{2})} \left(1 + \frac{x^2}{\nu}\right)^{-(\nu+1)/2},
$$

where $\nu > 0$ is a parameter. This is called *Student's t-distribution*. Derive the gradient of $\log p_{\star}(x)$ and implement the unadjusted Langevin algorithm and Metropolis-adjusted Langevin algorithm for this distribution. Plot the histogram of the samples for different values of ν and γ and discuss any interesting result you observe.

Exercise 8.3. Assume that you are given conditional distributions

$$
p(x|y) = \text{Exp}(y)
$$

$$
p(y|x) = \text{Exp}(x),
$$

and you have implemented the Gibbs sampler using these conditionals.

- 1. Write the Gibbs sampler algorithm (on paper) assuming only accessing uniform random numbers.
- 2. Now show that these conditionals are consistent with a target of the form $p(x, y) \propto$ $\exp(-xy)$.
- 3. Show that the "target density" is not a valid density. What issue does this highlight about Gibbs sampling implementations?
- 4. Finally, assume that we have the joint density $p(x, y)$ in the same form as you derived in Part 2, but constrained to $(x, y) \in (0, 1) \times (0, 1)$. In this case, derive the Gibbs sampler by deriving full conditionals.

Exercise 8.4. Consider a generic target $p(x)$ and a proposal $q(x)$. Consider two algorithms: (i) The rejection sampler with proposal $q(x)$ and (ii) the independent MH sampler with proposal $q(x)$. Assume that *M* is chosen optimally for the rejection sampler. Prove that, for a given *x*, the MH acceptance ratio is always higher than the rejection sampler acceptance ratio, i.e., the MH algorithm accepts more often than the rejection sampler.