
solutions 9
Solution 9.1. The code is given below. Note that we have implemented the model as
described in the exercise. The code is given below.

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 T = 100
5 x = np.zeros(T)
6 y = np.zeros(T)
7
8 rng = np.random.default_rng(1234)
9
10 x0 = 1 # initial value
11
12 a = 0.9
13 sig_x = 0.01
14 sig_y = 0.1
15
16 x[0] = a * x0 + rng.normal(0, sig_x, 1) # this is x_1 on paper , but x[

0] in code
17 y[0] = x[0] + rng.normal(0, sig_y, 1)
18
19 for t in range(1, T):
20 x[t] = a * x[t-1] + rng.normal(0, sig_x, 1)
21 y[t] = x[t] + rng.normal(0, sig_y, 1)
22
23 plt.figure(figsize=(15, 8))
24 plt.plot(x, 'k', label='x')
25 plt.plot(y, 'r', label='y')
26 plt.legend()
27 plt.show()

In real world, this describes a process that converges to zero. Can model a number of things,
such as a decaying system, or a system that converges to a fixed point.

Solution 9.2. We will use a generic volatility model below:

x0 ∼ N
(

x; µ,
σ2

1 − φ2

)
,

xt|xt−1 ∼ N
(
xt; µ + φ(xt−1 − µ), σ2

)
,

yt|xt ∼ N (yt; 0, exp(xt)) .

This does an intuitive job: if xt is high, then the variance of yt is high, if xt is low, then the
variance of yt is low. Here xt are log-volatilities and yt are log-returns. The code is given
below.

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 # we will use a generic volatility model below
5
6 T = 10000
7
8 x = np.zeros(T)
9 y = np.zeros(T)

10
11 rng = np.random.default_rng(1234)
12
13 mu = 0.1
14 phi = 0.99
15 sig = 0.2
16
17 x0 = rng.normal(mu, sig**2/(1-phi**2), 1)
18
19 x[0] = rng.normal(mu + phi * (x0 - mu), sig, 1)
20 y[0] = rng.normal(0, np.exp(x[0]), 1)
21
22 for t in range(1, T):
23 x[t] = rng.normal(mu + phi * (x[t-1] - mu), sig, 1)
24 y[t] = rng.normal(0, np.exp(x[t]), 1)
25
26 plt.figure(figsize=(15, 8))
27 plt.subplot(2, 1, 1)
28 plt.plot(x, 'k', label='x')
29 plt.legend()
30 plt.subplot(2, 1, 2)
31 plt.plot(y, 'r', label='y')
32 plt.legend()
33 plt.show()

Solution 9.3. As we discussed in the class (watch the lecture for this part, if you have not):

1. Recall that we would like to sample the marginal posterior p(θ|y1:T). This can be
done by sampling p(x0:T , θ|y1:T), then keeping the θ part and discarding the x0:T
part. For this, we would need to perform

• Sample x(k)0:T ∼ p(x0:T |y1:T , θ(k−1))
• Sample θ(k) ∼ p(θ|x(k)

0:T , y1:T)

for k = 1, . . . , K . A good candidate to sample the first part is a particle smoother,
which we have not covered (and will be part of the mastery material).

2. Let us try to derive a Metropolis-within-Gibbs sampler, by sampling each variable Xt

instead of a block sampling approach as described above. For this we need to derive
the full conditionals. Note that, using conditional independence (watch the lecture),
we can write

p(xt|x−t, θ, y1:T) ∝ f(xt|xt−1, θ)g(yt|xt, θ)f(xt+1|xt, θ).

except for t = 0 where we have

p(x0|x−0, θ, y1:T) ∝ µ(x0|θ)f(x1|x0, θ).

Therefore, one can define a Metropolis within Gibbs sampler performing following
steps:

• Sample x
(k)
0 ∼ µ(x0|θ(k−1))f(xk−1

1 |x0, θ(k−1)).
• Sample x

(k)
1 ∼ f(x1|x(k)

0 , θ(k−1))g(y1|x1, θ(k−1))f(x(k−1)
2 |x1, θ(k−1)).

...

• Sample x
(k)
t ∼ f(xt|x(k)

t−1, θ(k−1))g(yt|xt, θ(k−1))f(x(k−1)
t+1 |xt, θ(k−1)).

...
• Sample x

(k)
T ∼ f(xT |x(k)

T −1, θ(k−1))g(yT |xT , θ(k−1)).

• Sample θ(k) ∼ p(θ|x(k)
0:T , y1:T).

for k = 1, . . . , K . Note that the distributions on the r.h.s. above are all unnormalised.
Therefore, each sampling process here uses a Metropolis step, using the r.h.s. distri-
butions as the unnormalised distribution. Therefore, to complete this exercise, please
write these algorithms in full.

