0 ~N O Ul WN -

17
18
19
20
21
22
23
24
25
26
27

© 00 NO O WN -

SOLUTIONS 9

Solution 9.1. The code is given below. Note that we have implemented the model as
described in the exercise. The code is given below.

import numpy as np
import matplotlib.pyplot as plt

T = 100
x = np.zeros(T)
y = np.zeros(T)

rng = np.random.default_rng(1234)

x0 = 1 # initial value

a =20.9

sig_x = 0.01

sig_.y = 0.1

x[0] = a * x0 + rng.normal(0, sig_x, 1) # this is x_1 on paper, but x[

0] in code
y[0] = x[0] + rng.normal(0, sig_y, 1)

for t in range(1l, T):
x[t] = a * x[t-1] + rng.normal(0, sig_x, 1)
y[t] = x[t] + rng.normal(0, sig_y, 1)

plt.figure(figsize=(15, 8))
plt.plot(x, 'k', label='x"')
plt.plot(y, 'r', label='y")
plt.legend ()

plt.show ()

In real world, this describes a process that converges to zero. Can model a number of things,
such as a decaying system, or a system that converges to a fixed point.

Solution 9.2. We will use a generic volatility model below:
o2
Zo NN<37;M,1_¢2> g
zi|lri—g ~ N (xt;,u + d(wi—y — M);Uz))
Yilze ~ N (i3 0, exp(w)) -
This does an intuitive job: if z; is high, then the variance of v, is high, if z; is low, then the

variance of y; is low. Here z; are log-volatilities and y; are log-returns. The code is given
below.

import numpy as np
import matplotlib.pyplot as plt

we will use a generic volatility model below

—
I

10000

x = np.zeros(T)
np.zeros (T)

~<
]

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

rng

mu =
phi
sig

x0 =

x[0]
y[0]

for

plt
plt.
plt
plt.
plt.
plt
plt.
plt.

= np.random.default_rng(1234)

0.1
= 0.99
= 0.2

rng.normal (mu, sig**2/(1-phi**2), 1)

= rng.normal(mu + phi * (x0 - mu), sig, 1)
= rng.normal (0, np.exp(x[0]), 1)

t in range(l, T):
x[t] = rng.normal(mu + phi * (x[t-1] - mu), sig, 1)
y[t] = rng.normal (0, np.exp(x[t]), 1)

.figure(figsize=(15, 8))

subplot (2, 1, 1)

.plot(x, 'k', label='x")

legend ()
subplot (2, 1, 2)

.plot(y, 'r', label='y')

legend ()
show ()

Solution 9.3. As we discussed in the class (watch the lecture for this part, if you have not):

1.

Recall that we would like to sample the marginal posterior p(6|y;.r). This can be
done by sampling p(xo.7, 0|y1.7), then keeping the 6 part and discarding the z¢.r
part. For this, we would need to perform

« Sample z'k)o.z ~ p(zo.7|yr.r, 0F D)
« Sample 0% ~ p(0zly, yr.r)

fork =1,..., K. A good candidate to sample the first part is a particle smoother,
which we have not covered (and will be part of the mastery material).

. Let us try to derive a Metropolis-within-Gibbs sampler, by sampling each variable X,

instead of a block sampling approach as described above. For this we need to derive
the full conditionals. Note that, using conditional independence (watch the lecture),
we can write

P, 0, y1r) o f(@e] w1, 0)g(ye|ze, 0) f (wesalae, 0).
except for t = () where we have
p(zol|z—0, 0, y1.1) o< p(wo0) f (1|20, 0).

Therefore, one can define a Metropolis within Gibbs sampler performing following
steps:

« Sample x(()k) ~ (2o |0F DY f (25 ag, 0K,
« Sample W f(l’ﬂx(()k),Q(k_l))g(yﬂxl,e(k_l))f(:cgkfl)ml,e(k—l)),

k k - - k— -
« Sample ") ~ f(ailai2, 00)g(yuler, 0F0) f (i, 0470).

 Sample 2’y ~ f(rrlay) 1 04D g(yrlar, 640).

« Sample 6% ~ p(0]z3). y1.7).
fork = 1,..., K. Note that the distributions on the r.h.s. above are all unnormalised.
Therefore, each sampling process here uses a Metropolis step, using the r.h.s. distri-

butions as the unnormalised distribution. Therefore, to complete this exercise, please
write these algorithms in full.

