
exercises 9
Exercise 9.1. Simulate data from the following model

xt|xt−1 ∼ N (xt; axt−1, σ2
x),

yt|xt ∼ N (yt; xt, σ2
y).

For reproducibility, choose x0 = 1 (instead of sampling from a prior µ0). Choose a = 0.9,
σx = 0.01 and σy = 0.1. Simulate this system T = 100 time steps. Plot your x and y in
the same graph with different colors and give some examples what the model output can
model in the real world.

Exercise 9.2. Imagine you are asked to develop a volatility model. Intuitively, volatility is a
hidden quantity (that nobody knows about) which controls the variance of the observed
stock (or option) prices. If the volatility is high, the stock prices (or returns) will have high
variance, if the volatility is low, the prices (or returns) will have lower variance. Develop a
volatility model. What you need to do essentially is:

• To define a Markov transition kernel to model the volatility variable, defined it as xt

(similar to above). Note that a naive Gaussian kernel would give you negative values
and is therefore not suitable. You can use a Gaussian kernel but then you need to
figure out how to use it modelling variance.

• Define your likelihood – this is more clear. If higher volatility (xt) means higher
variance in observed returns (yt), how can you model it? Since we model returns
(not prices directly), negative values in yt are allowed.

• Simulate data and show your results meaningfully model volatility.

As a sanity check, your model should exhibit the following behaviour if you choose x as
a decaying or growing system. However, this is not the only output. The model is more
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Two examples of a simulated data from a volatility model. You can see that as x decays, the variance of y
decays – or if x grows, the variance y grows (it becomes more erratic).

important. Hopefully you will be able to generate some realistic data from your model,
such as the figure in the next page. You are free to search the literature for volatility models
and use any model you wish in published literature (only state-space models, not more
general ones).
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Exercise 9.3. Let us consider the following modification of our model:

θ ∼ p(θ),
x0|θ ∼ µ(x0|θ),

xt|xt−1, θ ∼ f(xt|xt−1, θ),
yt|xt, θ ∼ g(yt|xt, θ).

1. The main difference between this model and a regular state space model is the
existence of the parameter θ which also has its own prior. Let us assume that wewould
like to sample from p(θ|y1:T ), i.e., the parameter posterior. Assuming that we can
sample from p(x0:T |y1:T , θ) for a given θ and that we can sample from p(θ|x0:T , y1:T )
for a given x0:T , describe the Gibbs sampler as an idealised algorithm to sample from
p(θ|y1:T ). Suggest a method to simulate from p(x0:T |y1:T , θ) as a subroutine of this
Gibbs sampler.

2. Simulating p(x0:T |y1:T , θ) at once as a block samplermight be too expensive. Describe
a method simulating each Xt variable independently, conditioning on X−t, θ, y1:T .
Follow simplifications due to conditional independence and write down the algo-
rithm.
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