Link Search Menu Expand Document

Statistical Modelling - Concise notes

MATH50011

PDFs
Problem Sheets - Class
Table of contents

Colour Code - Definition are green in these notes, Consequences are red and Causes are blue

Content from MATH40005 assumed to be known.

Statistical Models

Parametric Statistical Models

Definition 1. Statistical Model

Statistical model; collection of probability distribution ${P_{\theta}:\theta \in \Theta}$ on a given sample space.
Set $\Theta$ - (Parameter Space) - set of all possible parametric values, $\Theta \subset \mathbb{R}^p$

Definition 2. Identifiable

Statistical model is identifiable if map $\theta \mapsto P_\theta$, one-to-one, $P_{\theta_1} = P_{\theta_2} \implies \theta_1 = \theta_2\quad \forall \theta_1,\theta_2 \in \Theta$

Using Models

Requirements for a model

  1. Agree with observed data "reasonable" well

  2. reasonably simple (no excess parameters)

  3. easy to interpret (parameter have practical meaning)

Point Estimation

Definition 3. Statistic

Statistic - function of observable random variable.

Definition 4. Estimate/Estimators

$t$ a statistic
$t(y_1,\dots,y_n)$ called estimate of $\theta$
$T(Y_1,\dots,Y_n)$ an estimator of $\Theta$

Properties of estimators

Bias

Definition 5. Bias

$T$ estimator for $\theta \in \Theta \subset \mathbb{R}$

\[bias_{\theta}(T) = E_{\theta}(T)-\theta\]

unbiased if $bias_{\theta}(T) = 0,\quad \forall \theta \in \Theta$
If $\Theta \subset \mathbb{R}^k$ often interested in $g(\theta),\ g:\theta \to \mathbb{R}$

\[\text{extend } bias_{\theta}(T) = E_{\theta}(T) - g(\theta)\]

Standard error

Definition 6.

$T$ estimator for $\theta \in \Theta \subset \mathbb{R}$

\[SE_{\theta}(T) = \sqrt{Var_{\theta}(T)}\]

Standard error, is standard deviation of sampling distribution of $T$

Mean Square Error

Definition 7.

$T$ estimator for $\theta \in \Theta \subset \mathbb{R}$
Mean square error of $T$

\[\begin{aligned} MSE_{\theta}(T) &= E_{\theta}(T-\theta)^{2}\\ &= Var_{\theta}(T) + [bias_{\theta}(T)]^2\end{aligned}\]

The Cramér-Rao Lower Bound

Theorem 1. (Cramér-Rao Lower Bound)

$T = T(X)$ unbiased estimator for $\theta \in \Theta \subset \mathbb{R}$ for $X = (X_1,\dots,X_n)$ with just pdf $f_{\theta}(x)$ under mild regularity conditions:

\[Var_{\theta}(T) \geq \frac{1}{I(\theta}\]

For $I_{\theta}$ the Fisher information of sample

\[\begin{aligned} I(\theta) &= E_{\theta}\left[\left\{ \frac{\partial}{\partial \theta}\log f_{\theta}(x) \right\}^2\right]\\ &= -E_{\theta}\left[\frac{\partial^2}{\partial \theta^2} \log f_\theta (x) \right]\\ I_n(\theta) &= -nE_{\theta}\left[\frac{\partial^2}{\partial \theta^2} \log f_\theta (x) \right]\end{aligned}\]

Proposition.
For a random sample: Fisher info proportional to sample size

Jensen’s inequality
For $X$ a random variable with $\varphi$ a convex function

\[\varphi(E[X])\leq E\left[\varphi (X)\right]\]

Call $E\left[\varphi (X)\right]-\varphi \left(E[X]\right)$ the Jensen gap

Asymptotic Properties

Definition 8.

Sequence of estimators $(T_{n})_{n\in\mathbb{N}}$ for $g(\theta)$ called (weakly) consistent if $\forall \theta \in \Theta$

\[T_n \xrightarrow[]{P_{\theta}} g(\theta) \quad (n\to \infty)\]

Definition 9.

Convergence in probability: $T_n \xrightarrow[]{P_{\theta}} g(\theta)$

\[\forall \epsilon > 0: \lim_{n\to\infty}P_{\theta}(|T_n - g(\theta)| < \epsilon) = 1\]

Lemma - (Portmanteau Lemma)
$X,X_n$ real valued random value.
Following are equivalent:

  1. $X_n \to X$ as $n \to \infty$

  2. $E[f(X_n)] \to E[f(X)] \quad n \to \infty$ for all bounded + continuous functions $f:\mathbb{R}\to \mathbb{R}$

Definition 10.

Sequence of estimators $(T_n)_{n\in\mathbb{N}}$ for $g(\theta)$ asymptotically unbiased if $\forall \theta \in \Theta$

\[E_{\theta} \to g(\theta) \quad n \to \infty\]

Lemma.
$(T_n)$ asymptotically unbiased for $g(\theta)$ and $\forall \theta \in \Theta$

\[Var_{\theta}(T_n) \to 0 \quad n \to \infty\]

$\implies (T_n)$ consistent for $g(\theta)$

Definition 11.

Sequence $(T_n)$ of estimators for $\theta \in \mathbb{R}$ asymptotically normal if

\[\sqrt{n}(T_n - \theta) \xrightarrow[]{d} N(0,\sigma^{2}(\theta))\]

for some $\sigma^2)(\theta)$

Theorem 2. (Central Limit Theorem)

$Y_1,\dots,Y_n$ be iid random variable with $E(Y_i) = \mu,\ Var(Y_i) = \sigma^2$

\[\implies \text{sequence } \sqrt{n}(\bar{Y} - \mu) \xrightarrow[]{d} N(0,\sigma^2)\]

Remark.
Under mild regularity conditions for asymptotically normal estimators $T_n$

\[SE_{\theta}(T_n) \approx \frac{\sigma(T_n)}{\sqrt{n}}\]

Lemma. (Slutsky)
$X_n,X,Y_n$ random variables
If $X_n \xrightarrow[d]{} X$ and $Y_n \xrightarrow[p]{} c$ for constant $c$

  1. $X_n + Y_n \xrightarrow[d]{} X + c$

  2. $Y_n X_n \xrightarrow[d]{} cX$

  3. $Y_{n}^{-1}X_{n} \xrightarrow[d]{} c^{-1}X\quad$ provided $c \neq 0$

Theorem 3. (Delta Method)

Suppose $T_n$ asymptotically normal estimator of $\theta$ with

\[\sqrt{n}(T_n - \theta) \xrightarrow[d]{} N(0,\sigma^{2}(\theta))\]

$g:\Theta \to \mathbb{R})$ differentiable function with $g’(\theta) \neq 0$. Then

\[\sqrt{n}[g(T_n) - g(\theta)] \xrightarrow[d]{} N(0,g'(\theta)^2\sigma^{2}(\theta))\]

Theorem 4. (Continuous Mapping Theorem)

$k,m \in \mathbb{N}, X,X_n, \quad \mathbb{R}^k-$valued random variable.
$g:\mathbb{R}^k \to \mathbb{R}^m$ continuous function at every point of $C$ s.t $P(X \in C) = 1$

  • If $X_n \xrightarrow[d]{} X \implies g(X_n) \xrightarrow[d]{} g(x)$ as $n\to\infty$

  • If $X_n \xrightarrow[p]{} X \implies g(X_n) \xrightarrow[p]{} g(X)$ as $n\to\infty$

  • If $X_n \xrightarrow[a.s]{} X \implies g(X_n) \xrightarrow[a.s]{} g(X)$ as $n\to\infty$

Maximum Likelihood Estimation

Definition 12. (Likelihood function)

Suppose observer $Y$ with realisation $y$
Likelihood function

\[L(\theta) = L(\theta:y) = \begin{cases} P(Y=y:\theta) & \text{ discrete data } \\ f_{Y}(y:\theta) & \text{ absolutely continuous data} \end{cases}\]

Likelihood function is the joint pdf/pmf or observed data as a function of unknown parameter.
Random sample $Y = (Y_1,\dots,Y_n)\quad Y_i$ iid.
If $Y_i$ has pdf $f(\cdot;\theta)$

\[\implies L(\theta) = \prod_{i=1}^{n}f(y_i:\theta)\]

Definition 13. (Maximum Likelihood Estimator)

MLE of $\theta$ is estimator $\hat{\theta}$ s.t

\[L(\hat{\theta}) = \sup_{\theta \in \Theta}L(\theta)\]

Properties of Maximum Likelihood estimators

MLEs functionally invariant

$g$ bijective function
$\hat{\theta}$ MLE of $\theta \implies \hat{\phi} = g(\hat{\theta})$ a MLE of $\phi = g(\theta)$

Large Sample property

Theorem 5.

$X_1,X_2,\dots$ iid observations with pdf/pmf $f_{\theta}$
$\theta \in \Theta,\ \Theta$ an open interval
$\theta_0 \in \Theta$ - true parameter.

Under regularity conditions (${x:f_{\theta}(x) > 0 }$ indpendent of $\theta$). We have

  1. $\exists$ consistent sequence $(\hat{\theta})_{n\in\mathbb{N}}$ of MLE

  2. $(\hat{\theta})_{n\in\mathbb{N}}$ consistent sequence of MLEs $\implies \sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow[]{d} N(0,(I_f(\theta_0))^{-1})$ (Asymptotic normality of MLE)
    Where $I_f{\theta}$ Fisher information of sample size $=1$

Remark: if MLE unique $(\forall n) \implies$ sequence of MLEs consistent

Remark
Limiting distribution depends on $I_f(\theta_0)$, which is often unknown in practical situations. $\implies$ need to estimate $I_f(\theta_0)$
iid sample; $I_f(\theta_0)$ estimated by

  • $I_f(\hat{\theta})$

  • $\frac{1}{n}\sum_{i=1}^{n}\left( \frac{\partial}{\partial \theta} \log(f(x_i:\theta))\rvert_{\theta = \hat{\theta}} \right)^2$

  • $-\frac{1}{n}\sum_{i=1}^{n} (\frac{\partial}{\partial \theta})^2 \log(f(x_i:\theta))\rvert_{\theta = \hat{\theta}}$

Often consistent $\implies$ converge to $I_f(\theta_0)$ in probability

Remark
Standard error of asymptotically normal MLE $\hat{\theta}{n}$
Approximated by $SE(\hat{\theta}_n) = \sqrt{\hat{I}^{-1}
{n}}/\sqrt{n}\ \hat{I}_n$ estimator from above.

Remark - Multivariate version.

$\Theta \subset \mathbb{R}^k$ open set, $\hat{\mathbf{\theta}}_n$ MLE based on $n$ observation.

\[\sqrt{n}(\hat{\mathbf{\theta}}_n - \mathbf{\theta}_0) \xrightarrow[]{d} N(0,(I_f(\mathbf{\theta_0})^{-1})\]

$\mathbf{\theta_0}$ the true parameter, $I_f(\mathbf{\theta})$ Fisher information matrix

\[\begin{aligned} I_{f}(\mathbf{\theta}) &:= E_{\theta}\left[ (\nabla \log f(X; \mathbf{\theta}))^T(\nabla \log f(X;\theta)) \right]\\ &:= -E_{\theta}\left[ \nabla^T \nabla \log f(X:\theta) \right]\end{aligned}\]

Definition 14.

Converges in distribution for random vector
$\mathbf{X,X_1,X_2}$ random vectors of dimension $k$

\[\mathbf{X}_n \xrightarrow[]{d} \mathbf{X} \quad (n\to\infty)\]

If $P(\mathbf{X}_n \leq z) \xrightarrow[n\to\infty]{} P(\mathbf{X} \leq z) \quad \forall z \in \mathbb{R}^k: z \mapsto P(X\leq Z) \text{ continuous}$

Confidence Regions

Definition 15. (Confidence interval)

$1-\alpha$ confidence interval for $\theta$, a random interval $I$ containing ‘true’ paramter with probability $\geq 1 - \alpha$

\[P_{\theta \in I} \geq 1-\alpha \quad \forall \theta \in \Theta\]

Construction of confidence intervals

Definition 16.

Pivotal Quantity for $\theta$ a function $t(Y,\theta)$ of data and $\theta$
s.t distribution of $t(Y,\theta)$ known (no dependency on unknown parameters)

Know distribution of $t(Y,\theta) \implies$ can find constant $a_1,a_2$ s.t $P(a_1 \leq t(Y_1,\theta) \leq a_2) \geq 1 - \alpha$
$\implies P(h_1(Y) \leq \theta \leq h_2(Y)) \geq 1 - \alpha$

Call $[h_1(Y),h_2(Y)]$ a random interval
with observed interval $[h_1(y),h_2(y)]$ a $1-\alpha$ confidence interval for $\theta$

Asymptotic confidence intervals

We often know

\[\sqrt{n}(T_n - \theta) \xrightarrow[]{d} N(0,\sigma^2(\theta))\] \[\implies \underbrace{\sqrt{n}(\frac{T_n - \theta}{\sigma(\theta)})}_{\text{use as pivotal quantity}} \xrightarrow[]{d} N(0,1)\]

Definition 17.

Sequence of random intervals $I_n$
an asymptotic $1-\alpha$ Confidence Interval if

\[\lim_{n\to\infty} P_{\theta} (\theta \in I_n) \geq 1 - \alpha \quad \theta\]

Simplification
Given consistent estimator $\hat{\sigma}n$ for $\sigma(\theta)\ \hat{\sigma}_n \xrightarrow[]{P\theta} \sigma(\theta) \ \forall \theta$

\[\sqrt{n}(\frac{T_n - \theta}{\sigma(\theta)}) \xrightarrow[]{d} N(0,1)\] \[T_n \pm c_{\alpha/2}\times\underbrace{\frac{\hat{\sigma}_n}{\sqrt{n}}}_{\text{estimates } SE(T_n)}\] \[T_n \pm c_{\alpha/2}SE(T_n)\]

Simplification.
$\hat{\sigma}^2 = \frac{Y}{n}(1-\frac{Y}{n}) \quad \hat{\sigma}^2 \xrightarrow[]{P} \theta(1-\theta)$

\[\underbrace{\sqrt{n}\frac{Y/n - \theta}{\sqrt{\frac{Y}{n}(1-\frac{Y}{n})}}}_{\text{pivotal quantity}} \implies \frac{y}{n} \pm \frac{c_{\alpha/2}}{\sqrt{n}}\sqrt{\frac{y}{n}(1-\frac{y}{n}}\]

Simultaneous Confidence Interval/Confidence regions.

Definition 18.

$\mathbf{\theta} = (\theta_1,\dots,\theta_k)^T \in \Theta \in \mathbb{R}^k$
With random intervals $(L_i(\mathbf{Y}),U_i(\mathbf{Y}))$ s.t

\[\forall \mathbf{\theta}: P_{\theta}(L_i(\mathbf{Y} < \theta_i < U_i(\mathbf{Y}), i \in \{1,\dots,k\}) \geq 1 - \alpha\]

$(L_i(\mathbf{y},U_i(\mathbf{y})) \ i \in {1,\dots,k}$ a $1-\alpha$ simultaneous confidence interval for $\theta_1,\dots,\theta_k$

Remark - (Bonferroni correction)

take $[L_i,U_i]$ a $1-\alpha$ confidence interval for $\theta_i,\ i \in {1,\dots,k}$

Hypothesis Testing

Prelim

Definition 19. (Hypotheses)

We have $2$ complementary hypothesis

  • $H_{0}:$ Null hypothesis - consider to be the status quo

  • $H_1$: Alternative hypothesis

Definition 20. (Hypthesis Test)

Hypothesis test a rule that specifies for which valus of a sample $x_1,\dots,x_n$ a decision is to be made

  • accept $H_0$ as true

  • reject $H_0$ and accept $H_1$

Rejection region/Critical region - subset of sample space for which $H_0$ rejected

Definition 21. (Types of error)

 $H_0$ True$H_0$ False
Don’t reject $H_0$$\checkmark$Type II Error
Reject $H_0$Type I Error$\checkmark$

Power of a Test

Definition 22. (Power function)

$\Theta$ parameter space with $\Theta_0 \subset \Theta,\ \Theta_1 = \Theta \backslash \Theta_0$
Consider:

\[\begin{aligned} H_0: & \theta \in \Theta_0\\ H_1: & \theta \in \Theta_1\end{aligned}\]

Given a test for this hypothesis, we have a Power function

\[\begin{aligned} \beta: &\theta \to [0,1]\\ \beta(\theta) &= P_{\theta}(\text{reject} H_0)\end{aligned}\]

$\theta \in \Theta_0 \implies$ want $\beta(\theta)$ small
$\theta \in \Theta_1 \implies$ want $\beta(\theta)$ large

p-Value

Definition 23. (p-value)

\[p = \sup_{\theta \in \Theta_0}P_{\theta}(\text{observing something 'at least as extreme' as the observation})\]

reject $H_0 \iff p \leq \alpha$
For test based on statistic $T$ with rejection for large value of $T$ we have

\[p = \sup_{\theta \in \Theta_0}P_{\theta}(T\geq t)\]

for $t$ our observed value

Connection between tests & confidence intervals

Constructing a test from confidence region

$Y$ a random observation.
$A(Y)$ a $1-\alpha$ confidence region for $\theta$

\[P(\theta \in A(Y)) \geq 1 - \alpha \quad \forall \theta \in \Theta\]

Define test for

\[\begin{aligned} H_0:& \theta \in \Theta_0\\ H_1:& \theta \not\in \Theta_0 \end{aligned}\]

for $\Theta_0 \subset \Theta$ a fixed subset with level $\alpha$ s.t

\[\text{Reject } H_0 \text{ if } \Theta_0 \cap A(Y) = \emptyset\] \[\begin{aligned} P_{\theta}(\text{Type I error}) = P_{\theta}(\text{reject}) &= P_{\theta}(\Theta_0 \cap A(Y) = \emptyset)\\ &\leq P_{\theta}(\theta \not\in A(Y)) \leq \alpha\end{aligned}\]

Constructing confidence region from tests

Suppose $\forall \theta_0 \in \Theta$ we have a level $\alpha$ test $\phi_{\theta_0}$ for

\[H^{\theta_0}_0: \theta = \theta_0 \quad \text{vs.} \quad H^{\theta_0}_1: \theta \neq \theta_0\]

A decision rule $\phi_{\theta_0}$ to reject/not reject $H^{\theta_0}_0$ satisfying:

\[P_{\theta_0}(\phi_{\theta_0} \text{ reject } H^{\theta_0}_0) \leq \alpha\]

Consider random set:

\[A:= \left\{ \theta_0 \in \Theta: \phi_{\theta_0} \text{ doesn't reject } H^{\theta_0}_0 \right\}\]

We see $A$ a $1-\alpha$ confidence region for $\theta$
$\forall \theta \in \Theta\ P_{\theta}(\theta \in A) = P_{\theta}(\phi_\theta \text{ not rejects }) = 1 - P_{\theta}(\phi_\theta \text{ rejects }) \geq 1 - \alpha$

Likelihood Ratio Tests

(Numbers don’t line up with official notes!!!)

Definition 24. (Likelihood ratio statistic)

\[t(\mathbf{y}) = \frac{sup_{\theta \in \Theta}L(\theta;\mathbf{y})}{sup_{\theta \in \Theta_0}L(\theta;\mathbf{y})} = \frac{\text{max likelihood under } H_0 + H_1}{\text{max likelihood under } H_0}\]

Theorem 6.

$X_1,\dots,X_n \sim N(0,1),\ X_i$ independent \(\sum_{i=1}^{n}X^{2}_i \sim \chi^{2}_{n}\)

Theorem 7.

Under regularity conditions

\[2\log t(\mathbf{Y}) \xrightarrow[]{D} \chi^2_{r} \quad (n\to \infty)\]

under $H_0$ where $r$ the number of independent restrictions on $\mathbf{\theta}$ needed to define $H_0$

Linear models with 2nd order assumptions

Simple Linear Regression

Definition 25. (Simple Linear Model)

\[\underbrace{Y_i}_{\substack{\text{outcome}\\ \text{observable random var}}} = \underbrace{\textcolor{red}{\beta_1} + \overbrace{a_i}^{\substack{\text{covariate}\\ \text{(observable constant)}}} + \textcolor{red}{\beta_2}}_{\textcolor{red}{\substack{\text{unknown}\\ \text{parameters}}}} + \overbrace{\epsilon_i}^{\text{error (not observable)}}\]

Least Square Estimators
$\hat{\beta_1},\hat{\beta_2}$ of $\beta_1,\beta_2$ defined as minimisers of

\[S(\beta_1,\beta_2) = \sum_{i=1}^{n}(y_i - \beta_1 - a_i\beta_2)^{2}\]

Remark

  • $e_i = y_i = \hat{\beta}_1 - a_i \hat{\beta}_2$ - residuals are observable, not i.i.d

  • unkown parameters $\beta_1,\beta_2$ and $\sigma^{2}$

  • $Y_1,\dots,Y_n$ generally not i.i.d observations
    independence holds if $\epsilon_1,\dots,\epsilon_n$ independent
    $Y_i$ not of same distribution, distribution depending on covariate $a_i$

Matrix Algebra

Lemma 5

  1. $A\in \mathbb{R}^{n\times m}, B \in \mathbb{R}^{m\times n}$
    $(AB)^T = B^T A^T$

  2. $A \in \mathbb{R}^{n\times n}$ invertible
    $\implies (A^{-1})^T = (A^T)^{-1}$

  3. $trace(AB) = trace(BA)$

  4. $rank(X^TX) = rank(X)$

Lemma 8

$A\in \mathbb{R}^{n\times n}$ symmetric $\implies \exists$ orthogonal $P$ s.t $P^T A P$ diagonal with diagonal entries $=$ e.vals of $A$
$A$ positive definite, symmetric $\implies \exists Q$ non-singular s.t $Q^T A Q = I_n$

Review of rules for $E,cov$ for random vectors

Definition 26.

$\mathbf{X} = (X_1,\dots,X_n)^T$ random vector

\[\implies E(\mathbf{X}) = (E(X_1),\dots,E(X_n))^T\]

Lemma 9
$\mathbf{X,Y}$ random vector

  1. $E(\mathbf{X} + \mathbf{Y}) = E(\mathbf{X}) + E(\mathbf{Y})$

  2. $E(a\mathbf{X}) = aE(\mathbf{X})$

  3. $AB$ deterministic matrices
    $E(A\mathbf{X}) = AE(\mathbf{X})$, $E(\mathbf{X^T}B) = E(\mathbf{X})^T B$

Definition 27. (Covariance)

$\mathbf{X,Y}$ random vectors

\[cov(\mathbf{X,Y}) = E(\mathbf{XY^T}) - E(\mathbf{X})E(\mathbf{Y})^T\] \[cov(\mathbf{X}) = cov(\mathbf{X,X})\]

Lemma 10
$\mathbf{X,Y,Z}$ random vector
$A,B$ deterministic matrices, $a,b \in \mathbb{R}$

  1. $cov(\mathbf{X,Y}) = cov(\mathbf{Y,X})^T$

  2. $cov(a\mathbf{X} + b\mathbf{Y}, Z) = a\cdot cov(\mathbf{X,Z}) + b\cdot cov(\mathbf{Y,Z})$

  3. $cov(A\mathbf{X},B\mathbf{Y}) = Acov(\mathbf{X,Y})B^T$

  4. $cov(A\mathbf{X}) = Acov(\mathbf{X})A^T$
    $cov(\mathbf{X})$ positive semidefinite and symmetric
    i.e. $\mathbf{c}^T cov(\mathbf{X}) \mathbf{c} \geq 0 \ \forall \mathbf{c}$
    All e.val. of $cov(\mathbf{X})$ non-negative

  5. $\mathbf{c,Y}$ independent $\implies cov(\mathbf{X,Y}) = 0$

Linear Model

Definition 28.

In a linear model

\[\mathbf{Y} = X\mathbf{\beta} + \mathbf{\epsilon}\]
  • $\mathbf{Y}$ - n. dimensional random vector (observable)

  • $X \in \mathbb{R}^{n\times p}$ known matrix - design matrix

  • $\mathbf{\beta} \in \mathbb{R}^{p}$

  • $\epsilon$ n-variate random vector (not observable); $E(\mathbf{\epsilon}) = 0$

Assumptions
2nd order assumptions (SOA)

\[cov(\mathbf{\epsilon}) = (cov(\epsilon_i,\epsilon_j))_{\substack{i = 1,\dots,n \\ j = 1,\dots,n}} = \sigma^{2}I_{n} \quad \sigma^{2} > 0\]

Normal theory assumptions (NTA)
$\mathbf{\epsilon} \sim N(0,\sigma^{2}I_{n})$, some $\sigma^{2} > 0$
$N$-multivariate $n$-dimensional normal multivariate distribution

\[NTA \implies SOA\]

Full rank (FR)
$X$ has full rank $rank(X) = r$

Identifiability

Definition 29.

Suppose statistical model with unkown parameter $\theta$
$\theta$ identifiable if no 2 different values of $\theta$ yield same distribution of observed data.

Least Square estimation

Estimate $\beta$ by least squares.
Least squares: choose $\beta$ to minimise

\[\begin{aligned} S(\beta) &= \sum_{i=1}^{n}\left (Y_i - \sum_{j=1}^{p}X_{ij}\beta_{j}\right)^{2}\\ &= (Y-X\beta)^T(Y-X\beta)\\ &= Y^T Y - 2Y^T X\beta + \beta^T X^T X \beta\\ \frac{\partial S(\beta)}{\partial \beta} &= \frac{\partial S(\beta)}{\partial \beta_i}_{i = 1,\dots,p} = -2X^TY + 2X^TX\beta\end{aligned}\] \[\begin{aligned} \text{Unique solution} &\iff X^TX \text{ invertible } (rank = p)\quad rank(X^TX) = rank(X)\\ &\iff \text{linear model of full rank}\end{aligned}\]

$\hat{\beta}$ satisfies LSE $\implies$ minimise $S(\beta)$

Properties of LSE

Assume (FR) and (SOA) $\implies \hat{\beta} = (X^TX)^{-1}X^{T}Y$

  • $\hat{\beta}$ linear in $\mathbf{X}$
    i.e. $\hat{\beta}: \mathbb{R}^{n} \to \mathbb{R}^{p}, y \mapsto (X^{T}X)^{-1}X^{T}\mathbf{y}$ linear mapping

  • $\hat{\beta}$ unbiased for $\beta$
    $\forall \beta\ E(\hat{\beta}) = (X^TX)^{-1}X^{T}E(\mathbf{Y}) = (X^TX)^{-1}X^{T}X\beta = \beta$

  • $cov(\hat{\beta}) = \sigma^{2}(X^X X)^{-1}$

Definition 30.

Estimator $\hat{\gamma}$ linear if $\exists L \in \mathbb{R}^{n}$ s.t $\hat{\gamma} = L^{T}Y$

Theorem 8. (Gauss-Markov Theorem for FR linear models)

Assume (FR),(SOA)
Let $\mathbf{c} \in \mathbb{R}^{p},\hat{\beta}$ a least square estimator of $\beta$ in a linear model.
$\implies$ estimator $c^{T}\mathbf{\beta}$ has smallest variance among all linear unbiased estimators for $c^{T}\beta$

Projection Matrices

Definition 31.

$L$ a linear subspace of $\mathbb{R}^{n},dim(L) = r\leq n$
$P \in \mathbb{R}^{n\times n}$ a projection matrix onto $L$ if

  1. $P\mathbf{x} = \mathbf{x} \quad \forall \mathbf{x} \in L$

  2. $P\mathbf{x} = \mathbf{0} \quad \forall \mathbf{x} \in L^{\perp} = { \mathbf{z} \in \mathbb{R}^{n} : \mathbf{z}^{T}\mathbf{y} = 0 \ \forall \mathbf{y} \in L}$

Lemma 11
$P$ a projection matrix $\iff \underbrace{P^{T} = P}{P \text{ symmetric}}$ and $\underbrace{P^{2} = P}{P \text{ independent}}$

Lemma 12
$A$ a $n\times n$ projection matrix $(A = A^{T}, A^{2} = A)$ of $rank(r)$

  1. $r$ of e.val of $A$ are 1 and $n-r$ are 0

  2. $rank(A) = trace(A)$

Residuals, Estimation of the variance

Definition 32.

$\hat{Y} = X\hat{\beta}$, $\hat{\beta}$ a least squares estimator, called vector of fitted values.

Lemma 13
$\hat{Y}$ unique and \(\hat{Y} = PY\) $P$ the projection matrix onto column space of $X$

Definition 33.

Vector of residuals.

\[\begin{aligned} \mathbf{e} &= Y - \hat{Y}: \text{ vector of residuals}\\ &= Y-PY = QY, Q = I - P: \text{ the projection of matrix onto } span(X)^{\perp}\\ E(\mathbf{e}) = E(QY) = QE(Y) = \underbrace{QX}_{=0}\beta = 0\end{aligned}\]

Diagnostic plots
Suppose data comes from model

\[Y = X\beta + Z\gamma + \epsilon \quad E(\epsilon) = 0\]

$z \in \mathbb{R}^{n}\backslash span(X), \gamma \in \mathbb{R}$ deterministic
But analyst works with \(Y = X\beta + \epsilon\) $\implies$ if $\gamma \neq 0$, used wrong model

\[\implies E(\epsilon) = E(QY) = E(Q(X\beta + Z\gamma + \epsilon)) = QZ\gamma\]

$\implies$ plot $QZ$ against residuals yields line through the origin.
if non-zero slope $\implies$ consider including $Z$

Residual sum of squares

Definition 34. (Residual sum of squares)

\[RSS = e^{T}e\]

Other forms

  • RSS = $\sum_{i=1}^{n}e^{2}_i$

  • RSS = $S(\hat{\beta}) = |Y - X\hat{\beta}|^{2}$

  • RSS = $Y^{T}Y - \hat{Y}^{T}\hat{Y}$

  • RSS = $(Y-\hat{Y})^{T}(Y-\hat{Y})$

  • RSS = $(QY)^{T}QY$

  • RSS = $Y^{T}QY$

Theorem 9.

\[\hat{\sigma}^{2} = \frac{RSS}{n-r}\]

An unbiased estimator of $\sigma^{2}$, $r = rank(X)$

Coefficient of determination - ($\mathbb{R}^{2}$)
For models containing intercept term ($X$ has column of 1s or other constants)

\[R^{2} = 1 - \frac{RSS}{\sum_{i=1}^{n}(Y_i - \bar{Y})^{2}}\]

Small RSS ‘better’ $\implies$ want large $R^{2}$
$0 \leq R^{2} \leq 1 \implies R^{2} = 1$ for perfect model.

Remark
$\frac{RSS}{n}$ an estimator of $\sigma^{2}$

\[\frac{1}{n}\sum_{i=1}^{n}(Y_{i} - \bar{Y})^{2}\]

estimator of $\sigma^{2}$ in model with only intercept term.

\[\implies \frac{RSS/n}{\frac{1}{n}\sum(Y_i - \bar{Y})^{2}} \approx \frac{\text{Var. in model}}{\text{Total variance}} \implies R^{2} \approx \frac{\text{Total var. - Var. in Model}}{\text{Total var.}}\]

Linear Models with Normal theory Assumptions

Distributional Results

Multivariate Normal Distribution

Denoted $N(\underbrace{\mu}{\in \mathbb{R}^{n}},\underbrace{\Sigma}{\in \mathbb{R}^{n\times n}})$, distribution of random vec. $\mu$ - Expectation, $\Sigma$ - Covariance

Definition 35.

$\Sigma$ - positive definite
$Z \sim N(\mu,\Sigma)$ if $Z$ has pdf of form

\[f(z) = \frac{1}{(2\pi)^{n/2}\lvert \Sigma \rvert^{1.2}}\exp \left( -\frac{1}{2}(z-\mu)^{T}\Sigma^{-1}(z-\mu) \right)\]

$n$-variate random vector $Z$ follows MVN distribution if

  • $\forall a \in \mathbb{R}^{n}$ random variable $a^TZ$ follows univariate normal distribution

  • $X_1,\dots,X_n \sim N(0,1)$ iid, let $\mu \in \mathbb{R}^{d}, A \in\mathbb{R}^{n\times r}$
    $\implies Z = AX + \mu \sim N(\mu,AA^T)$

  • $Z \sim N(\mu,\Sigma)$ if its characteristic function $\phi:\mathbb{R}^{n} \to \mathbb{C}, \phi(t) = E(\exp(iZ^{T}t)$ satisfies

    \[\phi(t) = \exp\left( i\mu^Tt - \frac{1}{2}t^T\Sigma t\right) \quad \forall \ t \in \mathbb{R}^{n},\mu \in \mathbb{R}^{n},\Sigma\in \mathbb{R}^{n\times n} \text{ symm. pos. def}\]

Remark
$Z\sim N(\mu,\Sigma) \implies$

  • $E(Z) = \mu$

  • $cov(Z) = \Sigma$

  • $A$ deterministic matrix, $b$ deterministic vector
    $AZ + b \sim N(A\mu + b, A\Sigma A^T)$

Remark
$X,Y$ random variables
$cov(X,Y) \neq = 0 \;\not!!!\implies X,Y$ independent

Lemma 14
$i= 1,\dots,k$ let $A_i \in \mathbb{R}^{n_i \times n_i}$ positive semidefinite and symmetric
$Z_i$ a $n_i$-variate random vector
if $Z = \begin{pmatrix}Z_1\ \dots \ Z_k\end{pmatrix} \sim N(\mu,\Sigma)$ for some $\mu \in \mathbb{R}^{\sum_{i=1}^{k}n_i}$ and $\Sigma = diag(A_1,\dots,A_n) \implies Z_1,\dots,Z_k$ independent.

Distributions derived from MVN

Definition 36. $\chi^{2}$ (Chi squared distribution)

$Z\sim N(\mu,I_n), \ \mu \in \mathbb{R}^n$
$U = Z^TZ = \sum_{i=1}^{n}z_{i}^{2}$ has non-central $\chi^{2}$ distribution with $n$ degrees of freedom and non-centrality parameter; $\delta = \sqrt{\mu^T\mu}$

\[U \sim \chi^{2}_{n}(\delta), \quad \chi^{2}_{n} =\chi^{2}_{n}(0)\]

Lemma
$U \sim \chi^{2}{n}(\delta) \implies E(U) = n + \delta^{2},\ Var(U) = 2n + 4\delta^{2}$
$U_i \sim \chi^{2}
{n_i}(\delta_i), i = 1,\dots,k \text{ and } U_{i} \text{ independent}$

\[\implies \sum_{i=1}^{k}U_i \sim \chi^{2}_{\sum_{n_i}\sqrt{\Sigma \delta_{i}^{2}}}\]

Definition 37.

$X,U$ independent random variables,
$X \sim N(\delta,1),\ U \sim \chi^{2}_{n}$

\[Y = \frac{X}{\sqrt{U/n}} \sim t_{n}(\delta)\]

Non-central $t$-distribution with $n$ degrees of freedom and centrality parameter $\delta$
$t_n = t_n(0)$

Remark
$Y_n \sim t_n \ \forall n \in \mathbb{N}$

\[Y_n \xrightarrow[n\to\infty]{d} N(0,1)\]

Definition 38.

$W_1 \sim \chi^{2}{n{1}}(\delta), W_2 \sim \chi^{2}_{n_2}$ independently

\[F = \frac{W_1/n_1}{W_2/n_2} \sim F_{n_1,n_2}(\delta)\]

Non-central $F$ distribution with $(n_1,n_2)$ degrees of freedom and non-centrality parameter $= \delta$
$F_{n_1,n_2} = F_{n_1,n_2}(0)$

Some independence results

Lemma 16
$A\in \mathbb{R}^{n\times n}$ positive semidefinite and symmetric matrix of rank $r$

\[\implies \exists L \in \mathbb{R}^{n\times r} \text{ s.t } rank(L) = r, A = LL^{T}\ L^TL = diag(\text{non-zero evals of } A)\]

Lemma 17
$X\sim N(\mu,I)$, $A\in \mathbb{R}^{n\times n}$ positive semidefinite symmetric, $B$ s.t $BA = 0$

\[\implies X^TAX, BX \text{ independent}\]

Lemma 18
$Z\sim N(\mu,I_n)$, $A$ a $n\times n$ projection matrix of rank $r$

\[\implies Z^TAZ \sim \chi^{2}_{r}(\delta) \quad \delta^{2} = \mu^T A\mu\]

Lemma 19
$Z \sim N(\mu,I_n), A_1,A_2 \in \mathbb{R}^{n\times n}$ projecetion matrix s.t $A_1A_2 =0$

\[\implies Z^{T}A_{1}Z\ \& \ Z^TA_2Z \text{ independent}\]

Lemma 20
$A_1,\dots,A_k$ symmetric $n\times n$ matrices s.t $\Sigma(A_i) = I_n$ if rank $A_i = r_i$
Following equivalent

  1. $\Sigma r_i = n$

  2. $A_iA_j = 0 \quad \forall i \neq j$

  3. $A_i \text{ independent } \forall i = 1,\dots,k$

Theorem 10. (The Fisher-Cochran Theorem)

Consider linear model $Y = X\beta + \epsilon, \ E(\epsilon) = 0$ with (NTA)
(NTA): $\epsilon \sim N(0,\sigma^{2}I_n) \implies Y \sim N(X\beta, \sigma^{2}I_n)$

\[f(y) = \frac{1}{(\sigma\sqrt{2\pi})^{n}}\exp\left( -\frac{1}{2\sigma^{2}}(y-X\beta)^T(y-X\beta)\right)\]

Estimation using maximum likelihood approach:

  • Log-likelihood of data is

    \[L(\beta,\mu^{2}) = -\frac{n}{2}\log(2\pi\sigma^{2})-\frac{1}{2\sigma^{2}}\underbrace{(Y-X\beta)^T(Y-X\beta)}_{S(\beta}\]
  • Maximising $L$ w.r.t $\beta$ (for fixed $\sigma^{2}$) equivalent to minimising $S(\beta) = (Y-X\beta)^T(Y-X\beta)$
    Max likelihood equivalent to least squares for estimating $\beta$

  • MLE for $\sigma^{2}$ is $\frac{RSS}{n}$

    \[L(\hat{\beta},\sigma^2) = -\frac{n}{2}\log(2\pi\sigma^{2})-\frac{1}{2\sigma^{2}}RSS \quad \text{ w.r.t } \sigma^{2}\]

Confidence intervals, tests for one dimensional quantities.

Lemma 21 - (Distribution of $RSS$)
Assume (NTA) $\implies \frac{RSS}{\sigma^{2}} \sim \chi^{2}_{n-r}\ r = rank(X)$

Lemma 22
Assume (FR),(NTA) in linear model.
Let $c \in \mathbb{R}^p$

\[\frac{c^T\hat{\beta} - c^T\beta}{\sqrt{c^T(X^TX)^{-1}c\frac{RSS}{n-p}}} \sim t_{n-p}\]

The $F$-test

Lemma 23
Under $H_0: E(Y) \in Span(X_0)$

\[F = \frac{RSS_0 - RSS}{RSS}\cdot\frac{n-r}{r-s}\sim F_{r-s,n-r}\]

$r = rank(X), s= rank(X_0)$

NEED EXPLAINING AND TYPING UP STILL

Confidence regions

Suppose $E(Y) = X\beta$ a linear model satisfying (FR),(NTA)
Want to find random set $D$ s,t $P(\beta \in D) \geq 1 -\alpha \ \forall \beta,\sigma^{2}$

\[A = \frac{(\hat{\beta}-\beta)^TX^TX(\hat{\beta}-\beta)}{RSS}\cdot\frac{n-p}{p}\]

Find distribution of $A \implies$ use $A$ as pivotal quantity for $\beta$
Numerator of first fraction re-written as

\[(Y-X\beta)^TP(Y-X\beta)\]

$P$, projection onto space span(cols. of $X$)

\[(Y-X\beta)^TP(Y-X\beta) = (Y-X\beta)^TPP(Y-X\beta) = [P(Y-X\beta)]^T[P(Y-X\beta)]\]

Taking $P = X(X^TX)^{-1}X^{T}$

\[\implies [X(\hat{\beta}-\beta)]^T[X(\hat{\beta}-\beta)]\]

With

\[RSS = Y^TQY = (Y-X\beta)^TQ(Y-X\beta),\quad Q = I_P \implies Z = \frac{1}{\sigma}(Y-X\beta)\] \[A = \frac{Z^TPZ}{Z^TQZ}\cdot\frac{n-p}{p}\quad Z\sim N(0,1),P +Q = I, rank(P) =p, P \& Q \text{ proj. mat.}\]

$\implies$ by Fisher-Cochran Theorem $A\sim F_{p,n-p}$
$1-\alpha$ confidence region $R$ for $\beta$ defined by all $\gamma \in \mathbb{R}^{p}$ s.t

\[\frac{(\hat{\beta}- \gamma)^{T} X^{T} X (\hat{\beta} - \gamma)}{RSS}\cdot\frac{n-p}{p}\leq F_{p,n-p,\alpha}\]

$P(Z \geq F_{p,n-p,\alpha}) = \alpha$ for $Z \sim F_{p,n-p}$
$R$ an ellipsoid central at $\hat{\beta}$

Remark
General definition of ellipsoid

\[\{z\in \mathbb{R}^p: (z-z_0)^TA^{-1}(z-z_0) \leq 1\}\quad A \text{ pos. semi def.}, z_0 \in \mathbb{R}^p\]

Diagnostics,Model selection, Extensions

Outliers

Definition 39. (Outlier)

Outlier - an obseravtion that does not conform to general pattern of the rest of the data.
Potential causes

  • error in data recording mechanism

  • Data set may be ‘contaminated (e.g. mix of 2 or more populations)

  • Indication that model/underlying theory needs improvement

Spot outliers $\implies$ look for residuals that are ‘too large’

\[\mathbf{e} = (I-P); \quad P - \text{ projects onto } span(X)\]

$X$ full rank $\implies P = X(X^TX)^{-1}X^T$

\[cov(\mathbf{e}) = (I-P)cov(Y)(I-P)^T = \sigma^{2}(I-P) \quad E(\mathbf{e}) = 0\]

$\implies$ under (NTA) $e_i \sim N(0,\sigma^{2}(1-P_{ii})) \quad P_ii$ the $i^{th}$ diagonal of $P$

\[\implies \frac{e_i}{\sqrt{(1-P_{ii}\sigma^{2}}} \sim N(0,1)\]

$\sigma^{2}$ unknown $\implies$ use unbiased estimator $\hat{\sigma}^{2} = \frac{RSS}{n-p}$

\[r_i = \frac{e_i}{\sqrt{\hat{\sigma}^{2}(1-P_{ii}}}\]

$r_i$ not necessarily $\sim N(0,1)$ but distribution is close to it.

Remark
$r_i \not\sim t$; $\hat{\sigma}^2,e_i$ not independent

Remark
$X\sim N(0,1) \implies$ probability for large $X$ v. rapidly decreasing
if (NTA) holds $\implies$ standardised residuals should be relatively small

Leverage

Definition 40.

Leverage of $i^{\text{th}}$ observation in linear model is $P_{ii}$
$i^{\text{th}}$ diagonal matrices of hat matrix $P$

Cook’s Distance

Definition 41. (Cook’s Distance)

Measure how much $i^{\text{th}}$ observation changes $\hat{\beta}$

\[D_i = \frac{(\hat{\beta}_{(i)}-\hat{\beta})^TX^TX(\hat{\beta}_{(i)}-\hat{\beta})}{pRSS/(n-p)}\]

$\hat{\beta}_{(i)}$ - least squares estimator with $i^{\text{th}}$ observation removed

Alternatively

\[\begin{aligned} D_i &= \frac{(\hat{Y}-Y_{(i)})^T(\hat{Y}-Y_{(i)})}{pRSS/(n-p)} \quad \hat{Y}_{(i)} = X\hat{\beta}_{(i)}\\ &= r_{i}^{2}\frac{P_{ii}}{(1-P_{ii})r} \quad r_i \text{ standardised residuals}, r = rank(X)\end{aligned}\]

Under/Overfitting

Definition 42.

  1. Underfitting - necessary predictors left out

  2. Overfitting - unnecessary predictors included

Weighted Least Squares

$cov(Y) = \sigma^{2}I_n$ but now we take $cov(Y) = \sigma^{2}V$ instead for $V$ symmetric, positive definite.

Transform model s.t $cov(\epsilon) = \sigma^{2}I$ to estimate $\beta$
$V$ symmetric, positive definite $\implies \exists$ non-singular $T$ s.t $T^{T}VT = I_n\ TT^{T} = V^{-1}$

$\implies \exists$ orthogonal $P$, diagonal of e.vals of $V; D$ s.t $P^T V P = D$

Take $T = PD^{-1/2}P^{T} \implies V = PDP^T \implies T^TVT = PD^{-1/2}P^TPDP^TPD^{-1/2}P^T = I_n$

$TT^T = PD^{-1}P^T = V^{-1}$

Take $Z = T^TY \implies$

\[E(Z) = \underbrace{T^TX}_{= \tilde{X}}\beta\quad cov(Z) = T^TVT\sigma^{2} = \sigma^{2}I_n\]

$\implies E(Z) = \tilde{X}\beta$ satisfies (SOA)
Assuming (FR); \(\begin{aligned} \hat{\beta} &= [\tilde{X}^TX]^{-1}\tilde{X}^TZ\\ &= [X^T(TT^T)X]^{-1}X^T(TT^T)Y\\ &= (X^TV^{-1}X)^{-1}X^{T}V^{-1}Y\end{aligned}\) $\hat{\beta};$ optimal estimator in sense of Gauss-Markov Theorem.