Link Search Menu Expand Document

Multi-variable Calcuus & Differential Equations - Concise Notes 1

MATH50004

Term 1 Content

PDFs
Problem Sheets - Term 1
Problem Sheets - Term 2
Table of contents

Colour Code - Definition are green in these notes, Consequences are red and Causes are blue

Content from MATH40004 assumed to be known.

Term I

Vector Calculus

Prelim

Definition 1.1.1 - Einstein Summation Convention

$$a_{i}x_{i} = \sum_{i=1}^{3}x_{i}$$

Definition 1.1.2 - The Kronecker delta

$$\delta_{ij} = \begin{cases} 1, & i=j \\ 0, & i \neq j \end{cases}$$

Definition 1.1.3 - The Permutation Symbol

$$\epsilon_{ijk} = \begin{cases} 0, & \text{ if any 2 elements $i,j,k$ equal} \\ 1, & \text{if $i, j, k$ a cyclic permutation of $1, 2, 3$} \\\ -1, & \text{if $i, j, k$ an acyclic permutation $1, 3, 2$} \end{cases}$$

Formula - Relation between Kroenecker Delta and Permutation Symbol

$$\epsilon_{ijk} \epsilon_{klm} = \delta_{jl} \delta_{km} - \delta_{jm} \delta_{kl}$$ $$\epsilon_{ijk} \epsilon_{ilm} = \delta_{jl} \delta_{km} - \delta_{jm} \delta{kl}$$

Definition 1.1.4 - Vector Products

Here are some identities!:

  • $\textbf{a} \cdot \textbf{b} = a_{i}b_{i}$

  • $[\mathbf{a} \times \mathbf{b}]{i} = \epsilon{ijk} a_{j} b_{k}$

  • $\textbf{a} \times \textbf{b} = \begin{vmatrix}\textbf{i} & \textbf{j} & \textbf{k}\ a_1 & a_2 & a_3 \ b_1 & b_2 & b_3\end{vmatrix}$ $\implies [a \times b]{i} = epsilon{ijk} a_j b_k$

  • $\textbf{a} \cdot (\textbf{b} \times \textbf{c}) = (\textbf{a} \times \textbf{b}) \cdot \textbf{c} = \epsilon_{ijk} a_i b_j c_k$

  • $\textbf{a} \times (\textbf{b} \times \textbf{c}) = (\textbf{a} \cdot \textbf{c}) \textbf{b} - (\textbf{a} \cdot \textbf{b}) \textbf{c} \Rightarrow [\textbf{a} \times (\textbf{b} \times \textbf{c})]_i = (\textbf{a} \cdot \textbf{c}) b_i - (\textbf{a} \cdot \textbf{b}) c_i$

Gradient, Div, and Curl

Definition 1.2 - Gradient, Directional Derivatives

$\phi =$ constant, defines a surface in 3D, varying the constant yields a family of surfaces.

$$\hat{\textbf{n}}\frac{\partial \phi}{\partial n} = \nabla = (\frac{\delta}{\delta x}, \frac{\delta}{\delta y}, \frac{\delta}{\delta z}) \Rightarrow \nabla \phi = \frac{\delta \phi}{ \delta x} + \frac{\delta \phi}{ \delta y} + \frac{\delta \phi}{ \delta z}$$

s = $\frac{\delta \phi}{\delta s} = \nabla \phi \cdot \textbf{\^{s}}$

$\nabla \phi = \textbf{\^{r}} \frac{\delta \phi}{\delta r} + \frac{\hat{\theta}}{r} \frac{\delta \phi}{\delta \theta} + \textbf{k} \frac{\delta \phi}{\delta z}$

Definition 1.2.3 - Tangent Plane to $\phi(P)$

$$(\mathbf{r}-\mathbf{r}_{p})\cdot(\nabla \phi)_{P} = 0$$ $$\left(\frac{\delta \phi}{\delta x}\right)_P (x-x_P) + \left(\frac{\delta \phi}{\delta y}\right)_P (y-y_P) + \left(\frac{\delta \phi}{\delta z}\right)_P (z-z_P) = 0$$

Divergence & Curl

Definition 1.3.1 - Divergence and Curl

A a vector function of position

$$\textcolor{ForestGreen}{\textbf{Div \textbf{A}}} = \nabla \cdot \textbf{A} = \frac{\delta A_1}{\delta x} + \frac{\delta A_2}{\delta y} + \frac{\delta A_3}{\delta z} \text{ where }A = A_1 \textbf{\^{i}} + A_2 \textbf{\^{j}} + A_3 \textbf{\^{k}}$$ $$\textcolor{ForestGreen}{\textbf{Curl \textbf{A}}} = \nabla \times \textbf{A} = \textbf{\^{i}} \left(\frac{\delta A_3}{\delta y} - \frac{\delta A_2}{\delta z} \right) - \textbf{\^{j}} \left(\frac{\delta A_3}{\delta x} - \frac{\delta A_1}{\delta z} \right) + \textbf{\^{k}} \left(\frac{\delta A_2}{\delta x} - \frac{\delta A_1}{\delta y} \right)$$

Definition - Laplacian Operator

$$\nabla^2 \phi = \text{div}(\nabla \phi) = \frac{\delta^2 \phi}{\delta x^2} + \frac{\delta^2 \phi}{\delta y^2} + \frac{\delta^2 \phi}{\delta z^2}$$

Operations with Grad operator

Resulting Equalities

  1. $\nabla(\phi_1+\phi_2) = \nabla \phi_1 + \nabla \phi_2$

  2. $\text{div }(\textbf{A} + \textbf{B}) = \text{div }\textbf{A} + \text{div }\textbf{B}$

  3. $\text{curl }(\textbf{A} + \textbf{B}) = \text{curl }\textbf{A} + \text{curl }\textbf{B}$

  4. $\nabla (\phi \psi) = \phi \nabla \psi + \psi \nabla \phi$

  5. $\text{div}(\phi \textbf{A}) = \phi \text{ div }\textbf{A} + \nabla \phi \cdot \textbf{A}$

  6. $\text{curl}(\phi \textbf{A}) = \phi \text{ curl }\textbf{A} + \nabla \phi \times \textbf{A}$

  7. $\text{div}(\textbf{A} \times \textbf{B}) = \textbf{B} \cdot \text{curl }\textbf{A} - \textbf{A} \cdot \text{curl } \textbf{B}$

  8. $\text{curl}(\textbf{A} \times \textbf{B}) = (\textbf{B} \cdot \nabla)\textbf{ A} - \textbf{B}\text{ div }\textbf{A} -(\textbf{A} \cdot \nabla)\textbf{B} + \textbf{A} \text{ div }\textbf{B}$

  9. $\nabla(\textbf{A} \cdot \textbf{B}) = (\textbf{B} \cdot \nabla)\textbf{A}+(\textbf{A} \cdot \nabla)\textbf{B} + \textbf{B} \times \text{curl }\textbf{A} + \textbf{A} \times \text{curl } \textbf{B}$

  10. $\text{curl }(\nabla \phi) = 0$

  11. $\text{curl }(\text{curl } \textbf{A}) = \nabla(\text{div } \textbf{A})-\nabla^2 \textbf{A}$

  12. $\text{div }(\text{curl } \textbf{A}) = 0$

Integration

Definition 1.4.6 - Scalar and Vector Fields

If at each point of region $V$, scalar function $\phi$ defined -

$\phi$ a scalar field over $V$

Similarly if vector function $A$ defined $\forall v \in V$, $A$ a vector field.

If curl $A = 0$, $A$ is an irrotational vector field. If div $A = 0$, $A$ a solenoidal vector field

Path Integrals

Definition 1.5.1 - Definition of a Path Integral

$$\lim_{n\rightarrow \infty} \sum_{n=1}^{N} f_{n} \delta s_n = \int_{\gamma}f ds \Rightarrow \int_{\gamma}\textbf{F} \cdot d\textbf{r} \int_{\gamma}\textbf{F}\cdot \textbf{\^{t}} ds $$ where $\hat{t}$ is the normalized vector tangent to the path

Definition 1.5.3 - Conservative forces

If $F = \nabla \phi$ for a differentiable scalar function $\phi$, $F$ is said to be a conservative field, which has the following properties:

$$\int_{\gamma} \textbf{F} \cdot d\textbf{r} = \phi(B)-\phi(A)$$

Result independent of path joining A and B, in particular for $\gamma$ a closed curve ($B \equiv A$) We have:

$$\oint_{\gamma}\textbf{F}\cdot d\textbf{r} = 0$$

Call this a circulation of F around $\gamma$

If a vector field F s.t $\oint_{\gamma}F\cdot dr = 0$, for any closed curve $\gamma$ say F a conservative field, if $\textbf{F} = \nabla\phi \implies \textbf{F}$ conservative.

If F conservative $\implies$ can always find differentiable scalar function $\phi$ s.t F$=\nabla\phi$, call $\phi$ the potential of field F

Definition 1.5.4 - Calculation of Path Integrals

$\textbf{F}=\textbf{F}(x, y, z)$ $\gamma$ $(x(t), y(t), z(t)),$

$$\textbf{r} = {x(t)\textbf{\^{i}}+y(t)\textbf{\^{j}}+z(t)\textbf{\^{k}}} \Rightarrow d\textbf{r} = \frac{dx}{dt}\textbf{\^{i}}+\frac{dy}{dt}\textbf{\^{j}}+\frac{dz}{dt}\textbf{\^{k}}$$ $$\implies \int_{\gamma}\textbf{F}\cdot d\textbf{r} = \int_{t_0}^{t_1}\left(\textbf{F}_{1}\frac{dx}{dt}+\textbf{F}_{2}\frac{dy}{dt}+\textbf{F}_{3}\frac{dz}{dt}\right) dt$$

Surface Integrals

Definition 1.6.1 - Surface Integral

Consider a surface $S$,where we find the surface integral of $f = f(P)$ over $S$.

Dividing $S$ into small elements of area $\delta S_{i}$, with $f_{i}$ the values of $f$ at typical points $P_{i}$ of $\delta S_{i}$

The surface integral of $f$ over $S$ is

$$\int_{S}f dS = \lim_{\substack{N \to \infty \\ max(\delta S_{n}) \to 0}}\sum_{n=1}^{N}f_{n}\delta S_{n}$$

$f$ may be a vector or a scalar.

Types of Surfaces

Closed SurfaceConvexNot Convex

Definitions

  1. Closed Surface - Divides $3D$ space into $2$ non-connected regions; interior and exterior.

  2. Open Surface - Does not divide $3D$ space into 2 non-connected regions - has a rim which can be represented by closed curve.
    Can think of closed surfaces as sum of 2 open surfaces.

  3. Convex Surface - A surface which is crossed by a straight line at most twice

Evaluating surface integrals for plane surfaces in x-y plane

image

$dS$ infinitesimal area $\implies$ think of as approx. plane.
Vector areal element $dS$ is the vector $\hat{\mathbf{n}}dS$ for $\hat{\mathbf{n}}$ the unit normal vector to $dS$.
For a plane lying in $z = 0$, we can say $dS = dxdy$

For a rectangle, $x = a,b$ and $y = c,d$ circumscribing convex $S$. We let

$$y = \begin{cases} F_{1}(x) & \text{upper half ADB}\\ F_{2}(x) & \text{lower half ACB} \end{cases}$$ Area of $\mathbf{S}= \int_{S}dS = \int_{x=a}^{x=b}\int_{y=F_{2}(x)}^{y=F_{1}(x)}dydx = \int_{a}^{b}[F_{1}(x) -F_{2}(x)]dx $

For $f(x,y)$ a function of position

$$\int_{S}fdS = \int_{x=a}^{x=b}\int_{y = F_{2}(x)}^{y=F_{1}(x)}f(x,y)dydx$$

Equivalently;

$$x = \begin{cases} G_{1}(x) & \text{right half CBD}\\ G_{2}(x) & \text{left half CAD} \end{cases}$$ $$\textcolor{red}{\text{\textbf{Area of }} \mathbf{S} = \int_{S}dS = \int_{c}^{d} G_{1}(y) - G_{2}(y)dy}$$ $$\int_{S}fdS = \int_{y=c}^{y=d}\int_{x = G_{2}(x)}^{x=G_{1}(x)}f(x,y)dxdy$$

Projection of an area onto a plane

Right; Projection of curved surface $S$ onto $x-y$ plane

$$dS = \frac{d\Sigma}{|\hat{\mathbf{n}}\cdot\hat{\mathbf{k}}|}$$

The Projection Theorem

$P$ a point on surface $S$, which at no point is orthogonal to $\mathbf{k}$

$$\int_{S}f(P)dS = \int_{\Sigma}f(P)\frac{dx\ dy}{|\hat{\mathbf{n}}\cdot\hat{\mathbf{k}}|}$$

For $\Sigma$ a projection of $S$ onto $z= 0$, with $\hat{\mathbf{n}}$ normal to $S$
For $S$ given by $z = \phi(x,y)$

$$\int_{S}f(x,y,z)dS = \int_{\Sigma_{z}}f(x,y,\phi(x,y))\frac{dx\ dy}{|\hat{\mathbf{n}}\cdot\hat{\mathbf{k}}|}$$

Projecting onto $x =0$ or $y = 0$\

$$\int_{S}f(P)dS = \int_{\Sigma_{x}}f(x,y,\phi(x,y))\frac{dy\ dz}{|\hat{\mathbf{n}}\cdot\hat{\mathbf{i}}|} = \int_{\Sigma_{y}}f(x,y,\phi(x,y))\frac{dx\ dz}{|\hat{\mathbf{n}}\cdot\hat{\mathbf{j}}|}$$

$\Sigma_{x}$, projection onto $x=0$, $\Sigma_{y}$, projection onto $y=0$

Volume Integrals

Definition 1.7.1 - Volume Integral

Considering a volume $\tau$, split into $N$ subregions, ${\delta \tau_{i}}$, with ${P_{i}}$ typical points of ${\delta \tau_{i}}$.

$$\int_{\tau}f d\tau = \lim_{\substack{N \to \infty \\ max(\delta \tau_{i}) \to 0}}\sum_{i=1}^{N}f(P_{i})\delta \tau_{i}$$

In Cartesian coordinates, the volume element $d \tau = dxdydz$

Results relating line,surface and volume integrals

Green’s Theorem in the plane

$R$ a closed plane region bounded by a simple plane closed convex curve in $x-y$ plane.
$L,M$ continuous functions of $x,y$ with continuous derivatives throughout $R$. Then:

$$\oint_{C}(L\ dx + M\ dy) = \int_{R}(\frac{\partial M}{\partial x} - \frac{\partial L}{\partial y})dxdy,$$

For $C$ the boundary of $R$ described in the counter-clockwise sense.

Vector forms of Green’s Theorem

*(i) $2D$ Stokes Theorem

Let $F = L\mathbf{i} + M\mathbf{j}$ and $d\mathbf{r} = dx\mathbf{i} + dy\mathbf{j}$. Then

$$\text{curl }\mathbf{F} = \left(\frac{\partial M}{\partial x} - \frac{\partial L}{\partial y}\right)\mathbf{k}$$

Over region $R$ write $dxdy = dS$.

$$\label{eq1} \begin{split} \oint_{C}F \cdot dr & = \int_{R}k\cdot \text{curl } F dS\\ & = \int_{R}\text{curl }F \cdot d\mathbf{S}, \qquad d\mathbf{S} = \hat{\mathbf{k}}dS \end{split}$$

*(ii) Divergence Theorem in $2D$*</span>

Let $\mathbf{F} = M\mathbf{i} - L\mathbf{j}$. Then

$$\text{div }\mathbf{F} = \frac{\partial M}{\partial x} - \frac{\partial L}{\partial y}$$

So we can rewrite Green’s Theorem as

$$\int_{R}\text{div }\mathbf{F} dxdy = \oint_{C}F\cdot\hat{\mathbf{n}}ds$$

Green’s Theorem holds for more complicated geometries too, if C not convex we can see it as the composition of 2 or more simple convex closed curves.
Joining $A$, $A’$ form $C_{1}, C_{2}$ enclosing $R_{1},R_{2}$ s.t $R_{1} + R_{2} =R$

A non-convex boundary

$$\oint_{C}\mathbf{F}\cdot dr = \oint_{C_{1}}\mathbf{F}\cdot d\mathbf{r} + \oint_{C_{2}}\mathbf{F}\cdot d\mathbf{r} = \int_{R} \text{curl }\mathbf{F}\cdot d\mathbf{S}$$ $$\begin{split} \oint_{C_{1}} & = \int_{AXA'} + \int_{A'}^{A}\\ \oint_{C_{2}} & = \int_{A'YA} + \int_{A}^{A'}\\ \end{split}$$

Green’s Theorem in multiply-connected regions

Right; Green's Theorem in multiply-connected regions

$R$ simply-connected if any closed curve in $R$ can be shrunk to a point without leaving $R$.

For $2D$ any region with a hole in it; not simply connected, we say it is multiply-connected

Green’s theorem still holds in multiply-connected regions.

$C$ interpreted as the entire inner and outer boundary.

For doubly-connected region, describe outer $C_{0}$ anti-clockwise, $C_{1}$ clockwise, and join them via $A$ on $C_{0}$ and $B$ on $C_{1}$

$R$ now a simply connected region bounded by $(C_{0} + AB + C_{1} + BA)$

$$\int_{R}\text{curl }\mathbf{F}\cdot d\mathbf{S} = \left(\oint_{C_{0}} + \int_{A}^{B} + \oint_{C_{0}} + \int_{B}^{A}\right)(\mathbf{F}\cdot d\mathbf{r})$$ $$\int_{R}\text{curl }\mathbf{F}\cdot d\mathbf{S} = \left(\oint_{C_{0}} + \oint_{C_{1}} \right)(\mathbf{F}\cdot d\mathbf{r}) = \left( \oint_{C}\mathbf{F}\cdot d\mathbf{r} \right)$$

Where $C = C_{0} + C_{1}$

Flux

If $S$ is a surface then the flux of $A$ across $S$ is defined as

\[\int_{S}\mathbf{A\cdot \hat{n}}dS\]

If $S$ a closed surface then by convention draw unit normal $\mathbf{\hat{n}}$ out of $S$.

The divergence theorem

If $\tau$ the volume enclosed by a closed surface $S$ with unit outward normal $\mathbf{\hat{n}}$ and $\mathbf{A}$ is a vector field with continuous derivatives throughout $\tau$, then:

$$\int_{S}\mathbf{A\cdot \hat{n}}dS = \int_{\tau}div \mathbf{A}d\tau$$

The Divergence theorem in more complicated geometries!

The divergence theorem for a non-convex surface

  1. Non-convex surfaces

    non-convex surface $S$ can be divided by surfaces(s) $\sigma$ into 2 (or more) parts $S_{1}$ and $S_{2}$ which together with $\sigma$ form convex surfaces $S_{1} + \sigma, S_{2} + \sigma$/
    Applying divergence theorem to the convex parts, upon addition yields the same result as before.

  2. A region with internal boundaries

    1. Simply-connected regions - e.g space between concentric spheres.

      Simply-connected regions

      Given interior surface $S_{i}$ and outer surface $S_{o}$. A plane $\Pi$ cutting both $S_{o},S_{i}$, divides $S_{o},S_{i}$ into open $S_{o}^{(1)},S_{o}^{(2)}$ and $S_{i}^{(1)},S_{i}^{(2)}$ respectively.
      Apply divergence theorem to $\tau_{1},\tau_{2}$ bounded by closed $S_{o}^{(1)} + S_{i}^{(1)} + \Pi$ and $S_{o}^{(2)} + S_{i}^{(2)} + \Pi$. Upon addition contribution from $\Pi$ cancels. \(\int_{S_{o}+S_{i}}\mathbf{A\cdot \hat{n}}dS = \int_{S}\mathbf{A\cdot \hat{n}}dS = \int_{\tau_{1}}div \mathbf{A}d\tau + \int_{\tau_{2}}div \mathbf{A}d\tau = \int_{\tau}div \mathbf{A}d\tau\)

    2. Multiply-connected regions

      Multiply-connected regions

      e.g. region between 2 cyclinders.
      Given interior surface $S_{i}$ and outer surface $S_{o}$, linked by plane $\Pi$.
      Consider the closed surface, enclosing simply connected region $\tau$

      $S_{i} +$ side 1 of $\Pi+ S_{o} +$ side 2 of $\Pi$

      Applying divergence theorem to $\tau$. Once again gives \(\int_{S_{0}+S_{i}}\mathbf{A\cdot\hat{n}}dS = \int_{\tau}div\mathbf{A}d\tau\)

Green’s identity in 3D

For $\phi$ and $\psi$ 2 scalar fields with continuous derivatives. We consider $\mathbf{A} = \phi \nabla \psi$, for which we have

$$\begin{aligned} div\mathbf{A} &= \phi\nabla^{2}\psi + (\underline{\nabla}\phi)\cdot(\underline{\nabla}\psi)\\ \mathbf{\hat{n}\cdot A} &= \phi(\underline{\nabla}\psi)\cdot\hat{\mathbf{n}} = \phi\frac{\partial \psi}{\partial n} \end{aligned}$$

Green’s first identity

$$\int_{S}\left \{ \phi\frac{\partial \psi}{\partial n} \right \} dS = \int_{\tau}\phi\nabla^{2}\psi + (\underline{\nabla}\phi)\cdot(\underline{\nabla}\psi)d\tau$$

Green’s Second identity

$$\int_{S}\left \{ \phi\frac{\partial \psi}{\partial n} - \psi\frac{\partial \phi}{\partial n} \right \} dS = \int_{\tau} \phi \nabla^{2}\psi - \psi\nabla^{2}\phi d\tau$$

Green’s identities in 2D

Divergence theorem in 2D: $\int_{F}div \mathbf{F}dxdy = \oint_{C}\mathbf{F\cdot\hat{n}}ds$

Giving the following Green’s identities:

$$\oint_{C}\phi\frac{\partial \psi}{\partial n}ds = \int_{R}[\phi \nabla^{2}\psi + (\nabla\psi)\cdot(\nabla\phi)dxdy$$

and

$$\oint_{C}\left [\phi\frac{\partial \psi}{\partial n} - \psi\frac{\partial \phi}{\partial n} \right ]ds = \int_{R}\left [ \phi \nabla^{2}\psi - \psi\nabla^{2}\phi \right ] dxdy$$

$\int_{R}\phi\nabla^{2}\psi\ dxdy = \oint_{C}\phi \frac{\partial \psi}{\partial n}ds - \int_{R}(\nabla\psi)\cdot(\nabla\phi)dxdy$ - Looks like Integration by parts

Gauss’ Flux Theorem

Let $S$ a closed surface with outward unit normal $\mathbf{\hat{n}}$ and let $O$ the origin of the coordinate system.

$\mathbf{A} = \frac{\mathbf{r}}{r^{3}}$ Then:

$$\int_{S}\frac{\mathbf{\hat{n}}\cdot\mathbf{r}}{r^{3}} = \begin{cases} 0, \text{ if $O$ is exterior to $S$}\\ 4\pi, \text{ if $O$ interior to $S$} \end{cases}$$

Stokes Theorem

Diagram for proof of Stokes' Theorem

Suppose $S$ is open surface with simple closed curve $\gamma$ forming its boundary.

$A$ a vector field with continuous partial derivatives, Then:

$$\oint_{\gamma}\mathbf{A}\cdot d\mathbf{r} = \int_{S}curl\mathbf{A\cdot\hat{n}}dS$$

This holds for any open surface with $\gamma$ as a boundary.

Theorem
For $\mathbf{A}$ continuously differentiable and simply connected region:

$$\underbrace{\oint_{\gamma}\mathbf{A}\cdot d\mathbf{r} = 0}_{\mathbf{A} \text{ conservative}} \iff curl\mathbf{A} = 0, \text{ throughout region for which $\gamma$ is drawn}$$

Curvilinear Coordinates

Intro + Definition

Consider generally cartesian coordinates: $(x_1,x_2,x_3)$ with each expressible as single-valued differentiable functions of the new coorinates $(u_1,u_2,u_3)$

$$x_i = x_i(u_1,u_2,u_3)$$
$$\frac{\partial x_i}{\partial x_j} = \delta_{ij} = \frac{\partial x_i}{\partial u_1}\frac{\partial u_1}{\partial x_j} + \frac{\partial x_i}{\partial u_2}\frac{\partial u_2}{\partial x_j}+ \frac{\partial x_i}{\partial u_3}\frac{\partial u_3}{\partial x_j}$$ With the following matrix equation $$\left( \begin{array}{lll} \partial x_{1} / \partial u_{1} & \partial x_{1} / \partial u_{2} & \partial x_{1} / \partial u_{3} \\ \partial x_{2} / \partial u_{1} & \partial x_{2} / \partial u_{2} & \partial x_{2} / \partial u_{3} \\ \partial x_{3} / \partial u_{1} & \partial x_{3} / \partial u_{2} & \partial x_{3} / \partial u_{3} \end{array} \right) \left( \begin{array}{lll} \partial u_{1} / \partial x_{1} & \partial u_{1} / \partial x_{2} & \partial u_{1} / \partial x_{3} \\ \partial u_{2} / \partial x_{1} & \partial u_{2} / \partial x_{2} & \partial u_{2} / \partial x_{3} \\ \partial u_{3} / \partial x_{1} & \partial u_{3} / \partial x_{2} & \partial u_{3} / \partial x_{3} \end{array} \right)=I$$

Or more succinctly

$$J(x_u)\cdot J(u_x) = I$$

We say $J(x_u)$ the Jacobian matrix for the $(x_1,x_2,x_3)$ system.

$det\left ( J(x_u) \right)\neq 0\ \implies J(u_x)$ exists $det(J(x_u)) = \frac{1}{det(J(u_x))}$

We say $(u_1,u_2,u_3)$ define a curvilinear coordinate system.
With each $u_i =$ constant, defining a family of surfaces, with a member of each family passing through each $P(x,y,z)$

Let $(\hat{\mathbf{a}}{1},\hat{\mathbf{a}}{2},\hat{\mathbf{a}}{3})$ unit vectors at $P$ in the direction normal to $u{i} = u_{i}(P)$, s.t $u_{i}$ increasing in the direction $\hat{\mathbf{a}}_{i}$

$$\mathbf{\hat{a}_i} = \mathbf{\frac{\nabla u_i}{\lvert \nabla u_i \rvert}}$$

if we have that $\mathbf{(\hat{a_1},\hat{a_2},\hat{a_3})}$ mutually orthogonal $\implies$ orthogonal curvilinear coordinate system.

$$\frac{\partial \mathbf{r}}{\partial u_i} = \mathbf{\hat{e_{i}}}h_{i}$$

For which we define $h_{i} = \lvert \partial \mathbf{r}/ \partial u_{i} \rvert$. We call these the length scales

Path element

$\mathbf{r} = \mathbf{r}(u_1,u_2,u_3)$ path element $d\mathbf{r}$ given by

$$\begin{aligned} d\mathbf{r} &= \frac{\partial \mathbf{r}}{\partial u_1}du_1 + \frac{\partial \mathbf{r}}{\partial u_2}du_2 + \frac{\partial \mathbf{r}}{\partial u_3}du_3\\ &= h_{1}du_{1}\hat{e_{1}} + h_{2}du_{2}\hat{e_{2}}+ h_{3}du_{3}\hat{e_{3}} \end{aligned}$$

For an orthogonal system

$$(ds)^{2} = (d\mathbf{r})\cdot(d\mathbf{r}) = h_{1}(du_{1})^{2} + h_{2}(du_{2})^{2} +h_{3}(du_{3})^{2}$$ $$\hat{e}_{i} = \hat{a}_{i} = \mathbf{\frac{\nabla u_i}{\lvert \nabla u_i \rvert}}$$

Volume Element

$$\begin{aligned} d\tau &= (h_{1}du_{1})(h_{2}du_{2})(h_{3}du_{3})\\ &= h_1h_2h_3du_1du_2du_3 \end{aligned}$$

Surface element

For $u_1$ constant. \(dS = h_2h_3du_2du_3\) similarly for $u_2,u_3$

Properties of various orthogonal coordinates

  1. Cartesisan coordinates $(x,y,z)$

    $$ \begin{aligned} d\tau &= dxdydz & d\mathbf{r} &= dx\mathbf{\hat{i}} + dy\mathbf{\hat{j}} + dz\\ \mathbf{\hat{k}} (ds)^{2} &= (d\mathbf{r})\cdot(d\mathbf{r}) = (dx)^{2} + (dy)^{2} + (dz)^{2} \end{aligned} $$

    We have $h_{1} = h_{2} = h_{3}$

  2. Cylindrical polar coordinates $(r,\phi,z)$
    Related to cartesian by

    \[x = r\cos \theta \quad y = r\sin \phi \quad z = z\] \[\begin{aligned} \frac{\partial \mathbf{r}}{\partial r} &= (\frac{\partial x}{\partial r})\mathbf{\hat{i}} + (\frac{\partial y}{\partial r})\mathbf{\hat{j}} + (\frac{\partial z}{\partial r})\mathbf{\hat{k}} \hspace{1.5pt} = (\cos\phi)\mathbf{\hat{i}} + (\sin\phi)\mathbf{\hat{j}}\\ \frac{\partial \mathbf{r}}{\partial \phi} &= (\frac{\partial x}{\partial \phi})\mathbf{\hat{i}} + (\frac{\partial y}{\partial \phi})\mathbf{\hat{j}} + (\frac{\partial z}{\partial \phi})\mathbf{\hat{k}} = -(r\sin\phi)\mathbf{\hat{i}} + (r\cos\phi)\mathbf{\hat{j}}\\ \frac{\partial \mathbf{r}}{\partial z} &= \mathbf{\hat{k}} \end{aligned}\] \[\begin{aligned} (\frac{\partial \mathbf{r}}{\partial r})\cdot(\frac{\partial \mathbf{r}}{\partial \phi}) &= 0\\ (\frac{\partial \mathbf{r}}{\partial r})\cdot(\frac{\partial z}{\partial \phi}) &= 0\\ (\frac{\partial \mathbf{r}}{\partial \phi})\cdot(\frac{\partial \mathbf{r}}{\partial z}) &= 0 \end{aligned}\] \[\begin{aligned} h_{1} &= \lvert \frac{\partial \mathbf{r}}{\partial r} \rvert = 1\\ h_{2} &= \lvert \frac{\partial \mathbf{r}}{\partial \phi} \rvert = r\\ h_{3} &= \lvert \frac{\partial \mathbf{r}}{\partial z} \rvert = 1 \end{aligned}\]

    Yielding length and volume elements:

    \[\begin{aligned} (ds)^2 &= (dr)^2+r^2(d)^2+(dz)^2 \end{aligned}\] \[\begin{aligned} d= rdrddz \end{aligned}\]
  3. Spherical polar coordinates $(r,\theta,\phi)$
    Related to cartesian by:

    \[x = r\sin\theta\cos\phi \quad y = r\sin\theta\sin\phi \quad z = r\cos\theta\] \[\theta \in [0,\pi],\ \phi \in [0,2\pi]\] \[\begin{aligned} \frac{\partial \mathbf{r}}{\partial r} &= (\sin\theta\cos\phi)\mathbf{\hat{i}} + (\sin\theta\sin\phi)\mathbf{\hat{j}} + (\cos\theta)\mathbf{\hat{k}} \\ \frac{\partial \mathbf{r}}{\partial \theta} &= (r\cos\theta\cos\phi)\mathbf{\hat{i}} + (r\cos\theta\sin\phi)\mathbf{\hat{j}} + (-r\sin\theta)\mathbf{\hat{k}} \\ \frac{\partial \mathbf{r}}{\partial \phi} &= (-r\sin\theta\sin\phi)\mathbf{\hat{i}} + (r\sin\theta\cos\phi)\mathbf{\hat{j}} + (0)\mathbf{\hat{k}} \end{aligned}\] \[\begin{aligned} (\frac{\partial \mathbf{r}}{\partial r})\cdot(\frac{\partial \mathbf{r}}{\partial \theta}) &= 0\\ (\frac{\partial \mathbf{r}}{\partial r})\cdot(\frac{\partial \mathbf{r}}{\partial \phi}) &= 0\\ (\frac{\partial \mathbf{r}}{\partial \phi})\cdot(\frac{\partial \mathbf{r}}{\partial \theta}) &= 0 \end{aligned}\] \[\begin{aligned} h_{1} &= \lvert \frac{\partial \mathbf{r}}{\partial r} \rvert = 1\\ h_{2} &= \lvert \frac{\partial \mathbf{r}}{\partial \theta} \rvert = r\\ h_{3} &= \lvert \frac{\partial \mathbf{r}}{\partial \phi} \rvert = r\sin\theta \end{aligned}\]

    Volume element:

    \[d\tau = r^{2}\sin\theta drd\theta d\phi\]

Gradient in orthogonal curvilinear coordinates

Let $\nabla\Phi = \lambda_{1}\mathbf{\hat{e}}{1} + \lambda{2}\mathbf{\hat{e}}{2} + \lambda{3}\mathbf{\hat{e}}_{3}$

In a general coordinate system for $\lambda_{i}$s to be found.

\[d\mathbf{r} = h_{1}du_{1}\hat{e}_{1} + h_{2}du_{2}\hat{e}_{2} + h_{3}du_{3}\hat{e}_{3}\] \[\begin{aligned} d\mathbf{\Phi} &= (\frac{\partial \phi}{\partial u_{1}})du_{1} + (\frac{\partial \phi}{\partial u_{2}})du_{2}+ (\frac{\partial \phi}{\partial u_{3}})du_{3}\\ &= (\frac{\partial \phi}{\partial x})dx + (\frac{\partial \phi}{\partial y})dy+ (\frac{\partial \phi}{\partial z})dz\\ &= (\nabla\Phi)\cdot d\mathbf{r} = \lambda_{1}h_{1}du_{1} + \lambda_{2}h_{2}du_{2} + \lambda_{3}h_{3}du_{3} \end{aligned}\] \[h_{i}\lambda_{i} = \frac{\partial \Phi}{\partial u_{i}}\] \[\implies \nabla \Phi = \frac{\hat{\mathbf{e}}_{1}}{h_{1}}\frac{\partial \Phi}{\partial u_{1}} + \frac{\hat{\mathbf{e}}_{2}}{h_{2}}\frac{\partial \Phi}{\partial u_{2}} + \frac{\hat{\mathbf{e}}_{3}}{h_{3}}\frac{\partial \Phi}{\partial u_{3}}\]
  1. Cylindrical polars $(r,\phi,z)$
    We have: $\begin{aligned} h_{1} &= 1
    h_{2} &= r
    h_{3} &= 1 \end{aligned}$

    \[\implies \begin{aligned} \nabla = \hat{r}\frac{\partial}{\partial r} + \frac{\hat{\phi}}{r}\frac{\partial}{\partial \phi} + \hat{z}\frac{\partial}{\partial z} \end{aligned}\]
  2. Spherical polars $(r,\theta,\phi)$
    We have:

    \[\begin{aligned} h_1 &= 1\\ h_2 &= r\\ h_3 &= r \end{aligned}\] \[\implies \begin{aligned} \nabla = \hat{r}\frac{\partial}{\partial r} + \frac{\hat{\theta}}{r}\frac{\partial}{\partial \theta} + \frac{\hat{\phi}}{r\sin\theta}\frac{\partial}{\partial \phi} \end{aligned}\]

Expressions for unit vectors

$$\hat{\mathbf{e}}_{i} =h_{i}\nabla u_{i}$$

Alternatively, unit vectors orthogonal $\implies$ if we know 2 already then

$$\hat{\mathbf{e}}_{1} = (\hat{\mathbf{e}}_{2}\times\hat{\mathbf{e}}_{3}) = h_{2}h_{3}(\nabla u_{2} \times \nabla u_{3})$$

Divergence in orthogonal curvilinear coordinates

Suppose we have vector field

$$\mathbf{A} = A_{1}\hat{\mathbf{e}}_{1} + A_{2}\hat{\mathbf{e}}_{2} + A_{3}\hat{\mathbf{e}}_{3}$$ $$\implies \nabla\cdot\mathbf{A} = \frac{1}{h_{1}h_{2}h_{3}}\left \{ \frac{\partial}{\partial u_{1}}(A_1h_2h_3) + \frac{\partial}{\partial u_{2}}(A_2h_3h_1) + \frac{\partial}{\partial u_{3}}(A_3h_1h_2) \right \}$$

So we have divergence in other coordinate systems as follows:

Curl in orthogonal curvilinear coordinates

$$curl\mathbf{A} = \frac{1}{h_1h_2h_3} \begin{vmatrix} h_1\hat{e}_{1} & h_2\hat{e}_{2} & h_3\hat{e}_{3}\\ \frac{\partial}{\partial u_{1}} & \frac{\partial}{\partial u_{2}} & \frac{\partial}{\partial u_{3}}\\ h_{1}A_{1} & h_{2}A_{2} & h_{3}A_{3} \end{vmatrix}$$
  1. Cylindrical polars
    $$curl \mathbf{A} = \frac{1}{r} \begin{vmatrix} \mathbf{\hat{r}} & r\hat{\phi} & \mathbf{\hat{k}}\\ \partial/\partial r & \partial/\partial \phi & \partial/\partial z\\ A_1 & A2 & A_3 \end{vmatrix}$$
  2. Spherical polars
    $$curl \mathbf{A} = \frac{1}{r^{2}\sin\theta} \begin{vmatrix} \mathbf{\hat{r}} & r\hat{\phi} & r\sin\theta\hat{\phi} \\ \partial/\partial r & \partial/\partial \phi & \partial/\partial z\\ A_1 & rA2 & r\sin\theta A_3 \end{vmatrix}$$

The Laplacian in orthogonal curvilinear coordinates

From the above grad and div;

$$\nabla^{2}\Phi = \nabla \cdot (\nabla\Phi)$$ $$= \frac{1}{h_{1}h_2h_3}\left \{ \frac{\partial}{\partial u_1}\left (\frac{h_2h_3}{h_1}\frac{\partial \Phi}{\partial u_1}\right ) + \frac{\partial}{\partial u_2}\left (\frac{h_1h_3}{h_2}\frac{\partial \Phi}{\partial u_2}\right ) + \frac{\partial}{\partial u_3}\left (\frac{h_1h_2}{h_3}\frac{\partial \Phi}{\partial u_3}\right ) \right \}$$
  1. Cylindrical polars $(r,\phi,z)$
    $$\begin{aligned} \nabla^{2}\Phi &= \frac{1}{r}\left \{ \frac{\partial}{\partial r}\left ( r\frac{\partial \Phi}{\partial r} \right ) + \frac{\partial}{\partial \phi}\left ( \frac{1}{r}\frac{\partial \Phi}{\partial \phi} \right ) + \frac{\partial}{\partial z}\left ( r\frac{\partial \Phi}{\partial z} \right ) \right \} \\ &= \frac{\partial^{2}\Phi}{\partial r^{2}} + \frac{1}{r}\frac{\partial \Phi}{\partial r} + \frac{1}{r^{2}}\frac{\partial^{2}\Phi}{\partial \phi^{2}} + \frac{\partial^{2}\Phi}{\partial z^{2}} \end{aligned}$$
  2. Spherical polars $(r,\theta,\phi)$
    $$\begin{aligned} \nabla^{2}\Phi &= \frac{1}{r^{2}\sin\theta}\left \{ \frac{\partial}{\partial r}\left ( r^{2}\sin\theta\frac{\partial \Phi}{\partial r} \right ) + \frac{\partial}{\partial \theta}\left ( \sin\theta\frac{\partial \Phi}{\partial \theta} \right ) + \frac{\partial}{\partial \phi}\left ( \frac{1}{\sin\theta}\frac{\partial \Phi}{\partial \phi} \right ) \right \} \\ &= \frac{\partial^{2}\Phi}{\partial r^{2}} + \frac{2}{r}\frac{\partial \Phi}{\partial r} + \frac{\cot\theta}{r^{2}}\frac{\partial\Phi}{\partial \theta} + \frac{1}{r^{2}}\frac{\partial^{2}\Phi}{\partial \theta^{2}} + \frac{1}{r^{2}\sin^{2}\theta}\frac{\partial^{2}\Phi}{\partial \phi^{2}} \end{aligned}$$

Changes of variables in surface integration

Suppose we have surface $S$, parametrized by quantities $u_1,u_2$. We can write:

$$x = x(u_1,u_2),\quad y = y(u_1,u_2), \quad z = z(u_1,u_2)$$

Consider surface to be comprised of arbitrarily small parallelograms, its sides given by keeping either $u_1$ or $u_2$

$$\begin{aligned} dS &= \text{ Area of parallelogram with sides } \frac{\partial \mathbf{r}}{\partial u_1}du_{1} \text{ and } \frac{\partial \mathbf{r}}{\partial u_2}du_{2}\\ &= \lvert \mathbf{J} \rvert du_{1}du_{2} \end{aligned}$$

Vector Jacobian given by $\mathbf{J} = \frac{d\mathbf{r}}{du_1}\times\frac{d\mathbf{r}}{du_2}$.

Useful in substitution of surface integrals:

$$\int_{S}f(x,y,z)dS = \int_{S}F(u_1,u_2)\lvert \mathbf{J}\rvert du_{1}du_{2]}$$

$F(u_1,u_2) = f(x(u_1,u_2),y(u_1,u_2),z(u_1,u_2))$

For S a region $R$ in the $x-y$ plane we can write:

$$\int_{R}f(x,y)dxdy = \int_{R}F(u_1,u_2)\lvert det(J(x_u)) \rvert du_1 du_2$$ $$\lvert \mathbf{J}\rvert = \vert \frac{d\mathbf{r}}{du_1}\times\frac{d\mathbf{r}}{du_2}\vert = det(J(x_u)) = \begin{vmatrix} \partial x/ \partial u_1 & \partial x/\partial u_2\\ \partial y/\partial u_1 & \partial y/\partial u_2 \end{vmatrix}$$

For a surface described by $z = f(x,y)$. We have $x = u_1, y = u_2$ and $\mathbf{r} = (x,y,f(x,y))$

We have:

\[\begin{aligned} \frac{\partial \mathbf{r}}{\partial u_1} &= \frac{\partial \mathbf{r}}{\partial x} \hspace{-2pt} &= \mathbf{\hat{i}} + \frac{\partial f}{\partial x}\mathbf{\hat{k}}\\ \frac{\partial \mathbf{r}}{\partial u_2} &= \frac{\partial \mathbf{r}}{\partial y} \hspace{-2pt} &= \mathbf{\hat{j}} + \frac{\partial f}{\partial y}\mathbf{\hat{k}}\\ \end{aligned}\]
$$\begin{aligned} \lvert \frac{\partial \mathbf{r}}{\partial u_1} \times \frac{\partial \mathbf{r}}{\partial u_2} \rvert &= \begin{Vmatrix} \mathbf{\hat{i}} & \mathbf{\hat{j}} & \mathbf{\hat{k}}\\ 1 & 0 & \partial f/ \partial x\\ 0 & 1 & \partial f/\partial y \end{Vmatrix}\\ &= \sqrt{1 + \lvert \nabla f \rvert^{2}} \end{aligned}$$

So we have area of surface given by

$$\int_{\Sigma}\sqrt{1 + \lvert \nabla f \rvert^{2}}dxdy$$

for $\Sigma$ the projection of $S$ onto the $x-y$ plane.

Term II

Introduction

ODEs and initial value problems

Definition 1.2. Ordinary differential equation

Consider $d \in \mathbb{N}$ an open set $D \subset \mathbb{R}\times \mathbb{R}^{d}$ and function $f:D \to \mathbb{R}^{d}$ Call

\[\dot{x} = f(t,x)\]

a d-dimensional (first-order) ordinary differential equation

Differentiable function $\lambda:I \to \mathbb{R}^{d}$ on interval $I \subset \mathbb{R}$ a solution to a differential equation if $(t,\lambda(t)) \in D$ and

\[\dot{\lambda}(t) = f(t,\lambda(t))\quad \forall t \in I\]

Say ODE autonomous if of form

\[\dot{x} = f(x)\]

for $f:D\to\mathbb{R}^{d}, D\subset \mathbb{R}^{d}$

Proposition 1.3.
$D \subset \mathbb{R}^{d}$ open. $f:D \to \mathbb{R}^{d}$ with autonomous ODE \(\dot{x} = f(x)\) $\implies \exists$ constant solution $\lambda:\mathbb{R}\to\mathbb{R}^{d}$ with $a \in \mathbb{R}^{d}$ at $\lambda(t) = a \iff f(a) =0 \forall t$

Definition 1.4. Initial value problem

$d \in \mathbb{N}$ open $D \subset \mathbb{R}\times\mathbb{R}^d,\ f:D \to \mathbb{R}^d$.
Call the following pair a initial value problem

\[\underbrace{\dot{x} = f(t,x)}_{\text{ODE}}\] \[\underbrace{x(t_0) = x_0}_{\text{Initial condition}}\]

Solutions s.t $\lambda:I \to \mathbb{R}^d$ with $t_0$ in interior of $I$ and $\lambda(t_0) = x_0$

Visualisations

Solution portrait

$f:D \subset \mathbb{R}\times\mathbb{R}^d \to \mathbb{R}^d$ with $\dot{x} = f(t,x)$
Graph of solutions given by

Solution Curve

\[G(\lambda) = \left\{(t,\lambda(t)): t \in I\right\} \subset \mathbb{R}\times \mathbb{R}^d\]

derivative of curve at point $t_0 \in I$ is

\[\frac{d}{dt}(t,\lambda(t))\vert_{t = t_0} = (t,\dot{\lambda}(t_0)) = (1, f(t_0,\lambda(t_0))\]

Vector field a map $(t,x) \mapsto (1,f(t,x))$, defined on $D$

Solution Curves are tangential to vector field.
Solution portrait given by visualisations of several solution curves in both

\[\underbrace{(t,x)-\text{space}}_{\text{extended phase space}} \text{and }\ \underbrace{x-\text{space}}_{\text{phase space}}\]

Phase Portraits

Autonomous differential equations not dependent on time. Visualisations in phase-space alone suffice.

Proposition 1.9.(Translation invariance)

$\lambda: I \to \mathbb{R}^{d}$ a solution to $\dot{x} = f(x)$

$\implies \forall \tau \in \mathbb{R}, \mu: \tilde{I}\to \mathbb{R}^{d}$

where $\tilde{I} = {t\in \mathbb{R}: t+ \tau \in I}$

$\mu(t) = \lambda(t+ \tau),\ \forall t \in \tilde{I}$ also a solution to this differential equation.

Existence & Uniqueness

Picard iterates

Proposition 2.1. - (Reformation as integral equation)

Consider initial value problem $\dot{x} = f(t,x),\quad x(t_0) = x_0$
for $f: D\subset \mathbb{R}\times\mathbb{R}^{d} \to \mathbb{R}^{d}$ continuous and $(t_0,x_0) \in D$
$\lambda: I \to \mathbb{R}^{d}$ a function on interval $I$ s.t $t_0 \in I$ and ${(t,\lambda(t)): t \in I} \subset D$

Following are equivalent:

  1. $\lambda$ solves initial value problem
    $\dot{\lambda}(t) = f(t,\lambda(t)),\ \forall t \in I$
    $\lambda(t_0) = x_0$

  2. $\lambda$ continuous and \(\lambda(t) = x_0 + \int_{t_0}^{t}f(s,\lambda(s))ds\ \forall t \in I\)

Higher dimensional derivative
for $g:\mathbb{R}\to\mathbb{R}^{d}$

\[\int_{t_0}^{t}g(s)ds = \begin{pmatrix}\int_{t_0}^{t}g_1(s)ds\\ \vdots \\ \int_{t_0}^{t}g_d(s)ds\end{pmatrix}\]

Definition 3. (Picard iterates)

Consider initial value problem; $\dot{x} = f(t,x)\quad x(t_0) = x_0$ and chosen interval $J$ s.t $t_0 \in J$
Define initial function:

\[\lambda_0(t) \equiv x_0 \quad \forall t \in J\]

and inductively the Picard iterates:

\[\lambda_{n+1}(t) := x_0 + \int_{t_0}^{t}f(s,\lambda_n(s))ds \quad \forall t\in J\ \forall n \in \mathbb{N}_{0}\]

If $(\lambda_n)$ uniformly convergent sequence with limit $\lambda_{\infty}$ obtain:

\[\lambda_{\infty}(t) = x_0 + \int_{t_0}^{t}f(s,\lambda_{\infty}(s))ds\ \forall t \in J\]

$\implies \lambda_{\infty}$ a solution to integral equation $\implies$ solves initial value problem

Lipschitz Continuity

Definition
Space of continuous functions on compact interval J $:= C^{0}(J,\mathbb{R}^{d})$
This a complete normed vector space under supremum norm. (Banach Space)

Definition 4. (Normed Vector Space)

Norm on a vector space $V$ over $\mathbb{R}$ a map $\lvert \lvert \cdot\rvert\rvert:V \to \mathbb{R}^{+}_{0}$ s.t

  1. $\lvert \lvert x\rvert\rvert = 0 \iff x = 0$

  2. $\lvert \lvert ax\rvert\rvert = \lvert a\rvert\cdot\lvert \lvert x\rvert\rvert,\ \forall a \in \mathbb{R},x \in V$

  3. $\lvert \lvert x+y\rvert\rvert\leq \lvert \lvert x\rvert\rvert+\lvert \lvert y\rvert\rvert$

Normed vector space $V$ complete if every cauchy sequence converges in $V$
Call a complete normed vector space a Banach Space

Definition 5. (Continuous + Lipschitz continuous functions)

$X \subset$ normed vector space $(V,\lvert \lvert \cdot\rvert\rvert_{V})$
$Y \subset$ normed vector space $(W,\lvert \lvert \cdot\rvert\rvert_{W})$
We say a function $f:X \to Y$

  1. Continuous if

    \[\forall x \in X, \epsilon > 0, \exists \delta > 0, \lvert \lvert x-\bar{x}\rvert\rvert_{V} < d \implies \lvert \lvert f(x)-f(\bar{x})\rvert\rvert_{W} < \epsilon\]
  2. Lipschitz Continuous if

    \[\exists K > 0, \lvert \lvert f(x)-f(\bar{x})\rvert\rvert_{W} \leq K\lvert \lvert x-\bar{x}\rvert\rvert_{V}\ \forall x,\bar{x} \in X\]

    Call $K$ a Lipschitz Constant

Lipschitz continuous $\implies$ Continuous

Lipschitz Continuity and MVT

Theorem 1. (Mean Value Theorem)

$I$ compact interval, $f$ continuously differentiable
$\forall x,y \in I,\ \exists \xi \in (x,y)$ s.t
$f(x)- f(y) = f’(\xi)(x-y)$
$\implies f’$ bounded $\implies$ $f$ Lipschitz continuous

Lipschitz Continuity and Mean Value Inequality

Definition 6. (Operator norm of a matrix)

For given matrix $A \in M_n(\mathbb{R})$ Operator norm:

\[\lvert \lvert A\rvert\rvert = \sup_{x\in\mathbb{R}^{n}\backslash\{0\}}\frac{\lvert \lvert Ax\rvert\rvert}{\lvert \lvert x\rvert\rvert} = \sup_{x\in\mathbb{R}^{n}\backslash\{0\}}\left|\left|A\frac{x}{\lvert \lvert x\rvert\rvert}\right|\right| = \sup_{x\in \mathbb{R}^{n},\lvert \lvert x\rvert\rvert = 1}\lvert \lvert Ax\rvert\rvert\]

Theorem 2. (Mean Value Inequality)

Consider open set $D \subset \mathbb{R}^{n}$ with $f:D \to \mathbb{R}^{m}$ continuously differentiable
$\forall x,y \in D$ with $[x,y] \subset D$

\[\exists \xi \in [x,y]\ s.t\ \lvert \lvert f(x)-f(y)\rvert\rvert \leq |f'(\xi)\lvert \lvert |x-y\rvert\rvert\]

$\forall x,y \in \mathbb{R}^{n}$, closed line segment connecting $x$ and $y$ given by

\[[x,y] = \{\alpha x + (1-\alpha)y \in \mathbb{R}^{n} : \alpha \in [0,1]\}\]

Lemma 2.9. (Triangle-like inequality for integrals)
$I \subset R$ an interval
$f:I \to \mathbb{R}^{m}$ continuous function

\[\implies \left\lvert \left\lvert \int_{t_0}^{t}f(s)ds \right\rvert\right\rvert \leq \left\lvert \int_{t_0}^{t} \lvert \lvert f(s)\rvert\rvert ds \right\rvert \quad \forall t,t_0 \in I\]

Corollary 2.10. - (Lipschitz continuous and mean value inequality)

$U \subset \mathbb{R}^{n}$ open. $f:U \to \mathbb{R}^{m}$ continuously differentiable
Given compact and convex set $C\subset U$. Restriction is Lipschitz continuous

\[f\rvert_{C}: C \to \mathbb{R}^{m}\]

Convex $C$ means $\forall x,y, \in C$ closed line segment lies in $C$ i.e. $[x,y] \subset C$

Picard-Lindelöf Theorem

Theorem 3. (Picard-Lindelöf theorem - global version)

Consider ODE $\dot{x} = f(t,x)$
$f:\mathbb{R}\times\mathbb{R}^d \to \mathbb{R}^d$ continuous, satisfying global Lipschitz condition of the form

\[\lvert \lvert f(t,x) - f(t,y) \rvert\rvert \leq K\lvert \lvert x - y \rvert\rvert \quad \forall t \in \mathbb{R}, \forall x,y \in \mathbb{R}^d,\ K > 0 \text{ a const}\]

Take $h = \frac{1}{2K} \implies$ every intial value problem $x(t_0) = x_0$ admits a unique solution

\[\lambda:[t_0 - h, t_0 + h] \to \mathbb{R}^d\]

Definition 7.

  1. Globally Lipschitz continuous
    if $\exists K > 0$ s.t $\lvert \lvert f(t,x) - f(t,y) \rvert\rvert \leq K \lvert \lvert x-y \rvert\rvert \quad \forall (t,x),(t,y) \in D$

  2. Locally Lipschitz continuous
    if $\forall (t_0,x_0) \in D$ and $\exists$ neighbourhood $U\subset D$ of $(t_0,x_0)$ and $\exists L > 0$ s.t

    \[\lvert \lvert f(t,x) - f(t,y) \rvert\rvert \leq K \lvert \lvert x - y \rvert\rvert \quad \forall (t,x),(t,y) \in U\]

Theorem 4. (Picard-Lindelöf theorem - local version)

$D \subset \mathbb{R}\times \mathbb{R}^{d}$ open
Consider function $f: D \to \mathbb{R}^d$ continuous and locally Lipschitz continuous.
For fixed $(t_0,x_0) \in D$, we have intial value problem. Following 2 hold

  1. Qualitative version
    Initial value problem has locally a uniquely determined solution

    \[\exists h = h(t_0,x_0) \text{ s.t. there is exactly one solution on } [t_0-h,t_0 + h]\]
  2. Quantitative version
    For some $\tau,\delta$ take set $W^{\tau,\delta}(t_0,x_0) := [t_0-\tau,t_0+\tau] \times \overline{B_{\delta}(x_0)}$. For $\overline{B_{\delta}(x_0)} := { x\in \mathbb{R}^d:\lvert \lvert x- x_0 \rvert\rvert \leq \delta }$ - Closed $\delta-$neighbourhood of $x_0$.
    Assume $W^{\tau,\delta}(t_0,x_0) \subset D$, suppose $\exists K,M > 0$ s.t

    \[\lvert \lvert f(t,x) - f(t,y) \rvert\rvert \leq K \lvert \lvert x - y \rvert\rvert \quad \forall (t,x),(t,y) \in U\]

    and

    \[\lvert \lvert f(t,x) \rvert\rvert \leq M \quad \forall (t,x) \in W^{\tau,\delta}(t_0,x_0)\]

    $\implies$ there is exactly one solution on $[t_0-h,t_0+h]$ with $h(t_0,x_0) := \min{\tau,\frac{1}{2K},\frac{\delta}{M}}$

Proposition 2.14. - (Continuously differentiable & Lipschitz Continuity)

$D\subset \mathbb{R}\times \mathbb{R}^d$ open. Continuously differentiable function $f:D\to \mathbb{R}^d$

$\implies f$ locally Lipschitz continuous w.r.t $x$ $\implies$ every intial value problem with differential equation with RHS $f$ solved locally uniquely.

Lemma 2.15. - (Solutions cannot cross)
Let $D \subset \mathbb{R}\times \mathbb{R}^d$ open. $f:D \to \mathbb{R}^d$ continuous and locally Lipschitz continuous w.r.t $x$
Given 2 solutions of $\dot{x} = f(t,x)$; $\lambda: I \to \mathbb{R}^d, \mu: J \to \mathbb{R}^d$
Either $\lambda(t) = \mu(t) \quad \forall t \in I \cap J$ or $\lambda(t) \neq \mu(t) \quad \forall t \in I \cap J$

Maximal Solutions

Definition 8. - (Maximal existence interval)

Consider initial value problem $\dot{x} = f(t,x),\ x(t_0) = x_0$ Define

  • $I_{+}(t_0,x_0) := \sup{ t_{+} \geq t_0 : \text{there exists solution on } [t_0,t_{+}] }$

  • $I_{-}(t_0,x_0) := \sup{ t_{-} \leq t_0 : \text{there exists solution on } [t_{-},t_0] }$

Maximal existence interval:

\[I_{max}(t_0,x_0) := \left( I_{-}(t_0,x_0), I_{+}(t_0,x_0) \right)\]

Theorem 5. (Existence of maximal solution + boundary behaviour)

There exists maximal solution $\lambda_{max}:I_{max}(t_0,x_0) \to \mathbb{R}^d$ to initial value problem. Having properties:

  1. $I_{+}(t_0,x_0)$ finite
    Either - maximal solution unbounded for $t\geq t_0$

    \[\sup_{t \in (t_0,I_{+}(t_0,x_0))} \lvert \lvert \lambda_{max}(t) \rvert\rvert = \infty\]

    Or boundary: $\partial D$ of $D$ non-empty and we have

    \[\lim_{t \nearrow I_{+}(t_0,x_0)} dist\left( (t,\lambda_{max}(t)),\partial D\right) = 0\]
  2. $I_{-}(t_0,x_0)$ finite
    Either - maximal solution unbounded for $t \leq t_0$

    \[\sup_{t \in (I_{-}(t_0,x_0),t_0)} \lvert \lvert \lambda_{max}(t) \rvert\rvert = \infty\]

    Or boundary: $\partial D$ of $D$ non-empty and we have

    \[\lim_{t \searrow I_{-}(t_0,x_0)} dist\left( (t,\lambda_{max}(t)),\partial D\right) = 0\]

Dist function

$A \subset \mathbb{R}^{n},\ dist(\cdot,A):\mathbb{R}^n \to \mathbb{R}_{0}^{+}$

\[dist(y,A) := \inf\{\lvert \lvert y-a\rvert\rvert: a \in A\} \quad \forall y \in \mathbb{R}^n\]

General solutions and flows

General solutions

Definition 9. (General solution to non-autonomous differential equation)

Consider $\dot{x} = f(t,x)$. We define

\[\Omega := \{ (t,t_0,x_0) \in \mathbb{R}^{1+1+d}: (t_0,x_0) \in D \text{ and } t\in I_{max}(t_0,x_0) \}\]

We say $\lambda:\Omega \to \mathbb{R}^{d}$ with $\lambda(t,t_0,x_0) := \lambda_{max}(t,t_0,x_0)$ a general solution of $\dot{x} = f(t,x)$

Solution identity:

\[\frac{\partial \lambda}{\partial t}(t,t_0,x_0) = f(t,\lambda(t,t_0,x_0)) \quad \forall (t,t_0,x_0) \in \Omega\]

Proposition 2.21. - (Properties of general solutions)
Consider $\dot{x} =f(t,x)$, $(t_0,x_0) \in D$ $\implies \forall s \in I_{max}(t_0,x_0)$ we have

  1. $I_{max}(s,\lambda(s,t_0,x_0)) = I_{max}(t_0,x_0)$

  2. $\lambda(t_0,t_0,x_0) = x_0$ (Initial value property)

  3. $\lambda(t,s,\lambda(s,t_0,x_0)) = \lambda(t,t_0,x_0) \forall t \in I_{max}(t_0,x_0)$ (Cocycle property)

Flows

Definition 10. (Flow of an autonomous differential equation)

Consider $\dot{x} = f(x)$
Define for any initial value $x_0 \in D$

\[J_{max}(x_0) := I_{max}(0,x_0)\] \[\varphi(t,x_0) = \lambda(t,0,x_0) \quad \forall t \in J_{max}(x_0)\]

$(t,x_0) \mapsto \phi(t,0,x_0)$ called flow of autonomous differential equation

Solution identity:

\[\frac{\partial \varphi}{\partial t}(t,x_0) = f(\varphi(t,x_0)) \quad \forall x_0 \in D, t \in J_{max}(0)\]

Proposition 2.24 - (Properties of the flow)
Let $\varphi$ be flow of autonomous differential equation. $\implies \forall x \in D$ we have

  1. $J_{max}(\varphi(t,x)) = J_{max}(x) - t \quad \forall t \in J_{max}(x)$

  2. $\varphi(0,x) = x$ (Initial value property)

  3. $\varphi(t,\varphi(s,x)) = \varphi(t +s ,x) \quad \forall t,s$ with $s,t+s \in J_{max}(x)$ (Group property)

  4. $\varphi(-t,\varphi(t,x)) = x \quad \forall t \in J_{max}(x)$

Definition 11. (Orbits (or trajectories))

$\varphi$ flow of autonomous differential equations $\forall x \in D$, we have the Orbit through $x$

\[O(x) := \{ \varphi(t,x) \in D: t \in J_{max}(x) \}\]

With the positive/negative half orbits:

  • $O^{+}(x) := { \varphi(t,x) \in D: t \in J_{max}(x) \cap \mathbb{R}^{+}_{0}}$

  • $O^{-}(x) := { \varphi(t,x) \in D: t \in J_{max}(x) \cap \mathbb{R}^{-}_{0}}$

Types of orbits

  1. $O(x)$ singleton $\implies f(x) = 0$ and $J_{max}(x) = \mathbb{R}$
    Call $x$ the equilibrium

  2. $O(x)$ closed curve $\exists t> 0$ s.t $\varphi(t,x) = x$ but $f(x) \neq 0$ $\implies$ $J_{max}(x) = \mathbb{R}$, call $x$ periods with $O(x)$ periodic orbit

  3. $O(x)$ not closed curve. function $t \mapsto \varphi(t,x)$ injective on $J_{max}(x)$

Proposition 2.27. - (Orbits of one-dimensional differential equation)
Consider $\dot{x} = f(x)$ where $d = 1$
$\implies$ all solutions monotone, $\not\exists$ periodic orbits
$\implies$ trajectory either an equilibrium or non-closed curve

Linear Systems

Matrix exponential function

Consider linear differential equation

\(\dot{x} = Ax \quad A \in \mathbb{R}^{d\times d}\) We have $\lvert \lvert Ax - Ay\rvert\rvert \leq \lvert \lvert A\rvert\rvert \lvert \lvert x-y\rvert\rvert$

$\implies$ globally Lipschitz continuous with constant $\lvert \lvert A \rvert\rvert$\

Solution to every intial value problem exists and are unique.
$\implies$ generates globally defined flow $\varphi: \mathbb{R}\times \mathbb{R}^d \to \mathbb{R}^d$

Picard iterates for local solutions
$\lambda_{0}(t) := x_0 \forall t \in J$
$\lambda_{n+1} = P(\lambda_n)(t) = x_{0} + \int_{0}^{t}A\lambda_n(s)ds \implies \lambda_n = \sum_{k=0}^{n} \frac{t^k A^k}{k!}x_0$
$\implies \lambda_{\infty}(t) = \varphi(t,x_0) e^{At}x_0$
We have the series converge whenever $\lvert t \rvert \leq h$ for some $h >0$

Definition 12. (Matrix exponential function)

\[t \mapsto e^{At} \qquad e^{At} = \sum_{k = 0}^{\infty}\frac{t^k A^k}{k!}\]

Lemma 3.1.

\[\lvert \lvert BC \rvert\rvert \leq \lvert \lvert B \rvert\rvert \lvert \lvert C \rvert\rvert\]

Proposition 3.2. - (Existence of matrix exponential)
Matrix $B \in \mathbb{R}^{d\times d}$

\(e^{B} := \sum_{k=0}^{\infty}\frac{1}{k!}B^{k} \in \mathbb{R}^{d\times d}\) exists

Theorem 6. (Flow of an autonomous linear differential equation)

Consider $\dot{x} = Ax, \quad A \in \mathbb{R}^{d\times d}$
Flow $\varphi: \mathbb{R}\times \mathbb{R}^d \to \mathbb{R}^d$ given by

\[\varphi(t,x) = e^{At}x \quad \forall t \in \mathbb{R}\]

Proposition 3.4. - (Properties of matrix exponential)

  1. $C = T^{-1}BT \implies e^{C} = T^{-1}e^{B}T$

  2. $e^{-B} = (e^{B})^{-1}$

  3. $BC = CB \implies e^{B+C} = e^{B}e^{C}$

  4. $B = diag(B_{1},\dots,B_p) \implies e^B = diag(e^{B_1},\dots,e^{B_p})$

Planar linear systems

Consider $\dot{x} = Ax, A \in \mathbb{R}^{2\times 2}$
Transform $A$ in Jordan normal form $\implies J = T^{-1}AT$, $T$ invertible

$\implies e^{AT} = Te^{Jt}T^{-1}$

C1. $A$ has $2$ distinct real eigenvalues, $a,b \in \mathbb{R}$ \(J = \begin{pmatrix}a & 0\\ 0 & b\end{pmatrix}\)

C2. $A$ has double real eigenvalues $a \in \mathbb{R}$, with $2$ linearly independent eigenvectors \(J = \begin{pmatrix}a & 0\\ 0 & a\end{pmatrix}\)

C3. $A$ double real eigenvalues with $1$ eigenvector \(J = \begin{pmatrix}a & 0\\ 1 & a\end{pmatrix}\)

C4. $A$ has $2$ complex eigenvalues $a \pm b$, $b \neq 0$ \(J = \begin{pmatrix}a & -b\\ b & a\end{pmatrix}\)

$A$ not singular:
C1

\[\begin{aligned} J &= \begin{pmatrix}a & 0\\ 0 & b\end{pmatrix} \quad a,b \in \mathbb{R}\backslash \{0\},\ a \neq b\\ e^{Jt} &= \begin{pmatrix} e^{at} & 0 \\ 0 & e^{bt}\end{pmatrix} \quad \forall\ t \in \mathbb{R}\end{aligned}\]

Trajectory given $O(x_0,y_0) = { (x,y_0(\frac{x}{x_0})^{b/a} \in \mathbb{R}^2: \frac{x}{x_0} > 0)}$

Obtaining the following phase portraits:

a< b < 0a < 0 < b0 < a < b
Stable knot - 2 tangentsSaddleUnstable knot - 2 tangents
drawingdrawingdrawing

C2

\[\begin{aligned} J &= \begin{pmatrix}a & 0\\ 0 & a\end{pmatrix} \quad a \in \mathbb{R}\backslash \{0\}\\ e^{Jt} &= \begin{pmatrix} e^{at} & 0 \\ 0 & e^{at}\end{pmatrix} \quad \forall\ t \in \mathbb{R}\end{aligned}\]

Trajectory given by $O(x_0,y_0) = { (x_0 e^{at}, y_0 e^{at}): t \in \mathbb{R}} = { (x,x\frac{y_0}{x_0}) \in \mathbb{R}^2: \frac{x}{x_0} > 0}$

Obtaining the following phase portraits:

a < 0a > 0
Stable knot - many tangentsUnstable knot - many tangents
drawingdrawing

C3

\[\begin{aligned} J &= \begin{pmatrix}a & 1\\ 0 & a\end{pmatrix} \quad a \in \mathbb{R}\backslash \{0\}\\ e^{Jt} &= \begin{pmatrix} e^{at} & te^{at} \\ 0 & e^{at}\end{pmatrix} \quad \forall\ t \in \mathbb{R}\end{aligned}\]

Trajectory given by $O(x_0,y_0) = {(x_0 e^{at} + y_0 te^{at}, y_0 e^{at}): t \in \mathbb{R}} = { (\frac{x_0}{y_0}y + \frac{y}{a}\ln \frac{y}{y_0}, y) \in \mathbb{R}^2: \frac{y}{y_0} > 0}$

Obtaining the following phase portraits:

a < 0a > 0
Stable knot - 1 tangentUnstable knot - 1 tangent
drawingdrawing

C4

\[\begin{aligned} J &= \begin{pmatrix}a & b\\ -b & a\end{pmatrix} \quad a \in \mathbb{R}\backslash \{0\}\\ e^{Jt} &= e^{at}\begin{pmatrix} \cos (bt) & \sin (bt) \\ -\sin (bt) & \cos (bt)\end{pmatrix} \quad \forall\ t \in \mathbb{R}\end{aligned}\]

Trajectory given by $O(x_0,y_0) = { e^{at} \begin{pmatrix} x_0 \cos (bt) + y_0 \sin (bt) \ y_0 \cos (bt) - x_0 \sin (bt) \end{pmatrix}: t \in \mathbb{R}}$

Obtaining the following phase portraits:

a < 0, b > 0a < 0, b < 0
Stable focusStable focus
drawingdrawing
a = 0, b > 0a = 0, b < 0
CentreCentre
drawingdrawing
a > 0, b > 0a > 0, b < 0
Unstable focusUnstable focus
drawingdrawing

$A$ singular:

C1

\[\begin{aligned} J &= \begin{pmatrix}a & 0\\ 0 & 0\end{pmatrix} \quad a \in \mathbb{R}\backslash \{0\}\\ e^{Jt} &= \begin{pmatrix} e^{at} & 0 \\ 0 & 1 \end{pmatrix} \quad \forall\ t \in \mathbb{R}\end{aligned}\]

Trajectory given by $O(x_0,y_0) = {(e^{at}x_0, y_0) : t \in \mathbb{R}}$
Obtaining the following phase portraits:

a < 0a > 0
drawingdrawing

C2

\[J = \begin{pmatrix} 0 & 0\\ 0 & 0 \end{pmatrix}\]

Trivially whole space is equilibria

C3

\[\begin{aligned} J &= \begin{pmatrix}0 & 1\\ 0 & 0\end{pmatrix} \quad a \in \mathbb{R}\backslash \{0\}\\ e^{Jt} &= \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \quad \forall\ t \in \mathbb{R}\end{aligned}\]

Trajectory given by $O(x_0,y_0) = e^{Jt}\begin{pmatrix}x_0 \ y_0 \end{pmatrix}{(x_0 + ty_0, y_0) : t \in \mathbb{R}}$
Obtaining the following phase portraits:

drawing

C4

Can’t happen as a 2D matrix of real eigenvalues can’t have eigenvalue of 0.

Remark 3.5 - (Meaning of real + imaginary parts of e.vals of A)

  1. Rate of exponential growth
    $Re[e.val]$ - determines rate of exponential growth behaviour of solution \(\lambda(t) = e^{At}\begin{pmatrix}x_0 \\ y_0 \end{pmatrix}\) Obtain exponential growth rate for $\mu (t) = e^{at}$ \(\lim_{t\to\infty}\frac{\ln e^{at}}{t} = a\)

    Lyapunov exponent
    For solution $\lambda$ with initial condition $(x_0,y_0) \neq (0,0)$

    \[\sigma_{lyap}(\lambda) = \lim_{t\to\infty}\frac{\ln \| \lambda (t)\|}{t}\]

    We have a solution decay if $\sigma_{lyap} < 0$ , grow if $\sigma_{lyap} > 0$

  2. Rate of Rotation
    Solution rotates is e.vals not real.
    For $a+bi$ an e.val

    • $\lvert b \rvert$ - speed of rotation

    • $sign(b)$ - orientation of rotation
      $b> 0 \implies \circlearrowright$
      $b< 0 \implies \circlearrowleft$

Jordan Normal Form

Theorem 3.6 - Complex Jordan Normal Form
$A\in \mathbb{R}^{d\times d}, \exists T \in \mathbb{C}^{d\times d}$ s.t we get

\[J := T^{-1} AT = \begin{pmatrix}J_1 & & 0\\ &\ddots\\0 && J_p \end{pmatrix}\]

With Jordan blocks

\[J_{j}=\left(\begin{array}{ccccc} \rho_{j} & 1 & & 0 & 0 \\ 0 & \rho_{j} & 1 & & 0 \\ & & \ddots & \ddots & \\ 0 & & & \rho_{j} & 1 \\ 0 & 0 & & 0 & \rho_{j} \end{array}\right) \quad \text { for all } j \in\{1, \ldots, p\}\]

For $p_j, j \in {1,\dots,p}$ complex e.vals of $A$

Theorem 3.7 - Real Jordan Form
$A \in \mathbb{R}^{d\times d}$, $\exists T \in \mathbb{R}^{d\times d}$ s.t

\[J := T^{-1} A T = \begin{pmatrix}J_1 & & 0\\ &\ddots\\0 && J_p \end{pmatrix}\]

$J_j$ as in 3.6 if $\rho_j$ real
if $\rho_j$ complex $\implies$

\[J_j = \begin{pmatrix} C_j & I_2 && 0 &0\\ 0 & C_2 & I_2 && 0\\ &&\ddots & \ddots\\ 0 &&& C_j & I_2\\ 0 & 0 && 0 & C_j \end{pmatrix} \quad \text{ with } C_j = \begin{pmatrix} a_j & b_j\\ -b_j & a_j \end{pmatrix}\ \rho_j = a_j + ib_j\]

Explicit representation of matrix exponential function

$A \in \mathbb{R}^{d\times d}$
Assume invertible $T \in \mathbb{R}^{d\times d}$ transforms $A$ into real

\[J := T^{-1} A T = \begin{pmatrix}J_1 & & 0\\ &\ddots\\ 0 && J_p \end{pmatrix}\] \[\implies e^{At} = Te^{Jt}T^{-1} = T \begin{pmatrix}e^{J_1 t} & & 0\\ &\ddots\\0 && e^{J_p t} \end{pmatrix} T^{-1}\]

Proposition 3.8
$A\in \mathbb{R}^{d\times d}$ $J_j, j \in {1,\dots,p}$
Jordan blocks for real Jordan normal form with eigenvalues $\rho_j$

  1. $\rho_j$ real

    \[\exp\left\{ \begin{pmatrix}\rho_j & 1 &&0\\ & \ddots&\ddots\\ &&\ddots& 1\\ 0 &&& \rho_j \end{pmatrix}t\right\} = e^{\rho_j t}\begin{pmatrix} 1 & t & t^2/2 & \dots & \frac{t^{d_j -1}}{(d_j -1)!} \\ 0 & 1 & t & \ddots & \vdots\\ && \ddots & \ddots & t^2/2\\ 0 &&& 1 & t\\ 0 & 0 && 0 & 1\end{pmatrix}\]
  2. $\rho_j = a_j + ib_j \in \mathbb{C}$

    \[\exp\left\{ \begin{pmatrix}C_j & I_2 &&0\\ & \ddots&\ddots\\ &&\ddots& I_2\\ 0 &&&C_j \end{pmatrix}t\right\} = e^{a_jt}\begin{pmatrix} G(t) & tG(t) & \frac{t^2}{2}G(t) & \dots & \frac{t^{d_j -1}}{(d_j -1)!}G(t) \\ 0 & G(t) & tG(t) & \ddots & \vdots\\ && \ddots & \ddots & \frac{t^2}{2}G(t)\\ 0 &&& G(t) & tG(t)\\ 0 & 0 && 0 & G(t)\end{pmatrix}\]

    Where

    \[G(t)=\left(\begin{array}{cc}\cos \left(b_{j} t\right) & \sin \left(b_{j} t\right) \\ -\sin \left(b_{j} t\right) & \cos \left(b_{j} t\right)\end{array}\right)\quad \forall t\ \in \mathbb{R}\]

Exponential growth behaviour

Definition 13. - Spectrum of $A$

\[A\in \mathbb{R}^{d\times d} \quad \Sigma (A) = \left \{ Re(\rho): \rho \text{ eval of } A\right \} = \{s_1,\dots,s_p\}\]

For $\dot{x} = Ax$ we have decomposition

\[\mathbb{R}^d = E_1 \oplus \dots \oplus E_q\]

$E_j$ invariant

  • $x\in E_j \implies \varphi(t,x) \in E_j \ \forall t \in \mathbb{R}$

  • $x \in E_j \backslash {0} \implies \sigma_{lyap}(\varphi(\cdot,x)) = \lim_{t\to\infty}\frac{|\varphi(t,x)|}{t} = s_j$

Definition 14. - semi-simple eigenvalue

If all Jordan blocks associated to eval in real Jordan normal form are:

  • 1 dim. for real e.val
  • 2 dim. for non-real e.val

Proposition 3.9 - (Exponential estimate for matrix exponential function)

$A\in \mathbb{R}^{d\times d}$, Choose $\gamma > \max \Sigma(A)$
If all e.vals $\rho$ with $Re(\rho) = \max \Sigma(A)$, semi-simple $\implies$ take $\gamma = \max \Sigma(A)$

\[\implies \exists K>0 s.t \|e^{At} \| \leq Ke^{\gamma t} \quad \forall t\geq 0\]

Variation of constants formula

Proposition 3.10 - (Variation of constants formula)
General solution to $\dot{x} = Ax + g(t)$ given by

\[\lambda(t,t_0,x_0) = e^{A(t-t_0)}x_0 + \int_{t_0}^{t}e^{A(t-s)}g(s) ds \quad \forall t,t_0 \in I, x_0 \in \mathbb{R}^d\]

Non-linear systems

Stability

Basic definitions

Definition 15.

$x^{\ast}$ an equilibrium of $\dot{x} = f(x) \implies f(x^{*}) = 0$

  1. $x^{*}$ stable if $\forall \epsilon > 0, \exists \delta >0$ s.t

    \[\|\varphi(t,x) - x^{*}\| < \epsilon \quad \forall x \in B_{\delta}(x^{*}) \text{ and } t \geq 0\]
  2. $x^{\ast}$ unstable if not stable

  3. $x^{*}$ attractive if $\exists \delta > 0$ s.t

    \[\lim_{t\to \infty}\varphi(t,x) = x^{*} \quad \forall x \in B_{\delta}(x^{*})\]
  4. $x^{\ast}$ asymptotically stable if $x^{\ast}$ stable and attractive

  5. $x^{*}$ exponentially stable if $\exists \delta>0, K\geq 1$ and $\gamma <0$ s.t

    \[\| \varphi(t,x) -x^{*}\| \leq \| Ke^{\gamma t}\|\]
  6. $x^{\ast}$ repulsive if $\exists \delta >0$ s.t $\lim_{t\to -\infty} \varphi(t,x) = x^{\ast}, \forall x \in B_{\delta}(x^{\ast})$

Stability Diagram

Definition 16. (Homoclinic and heteroclinic orbits)

$\dot{x} = f(x)\ f:\underbrace{D \subset \mathbb{R}^d}_{\text{open}}\to \mathbb{R}^d$ locally Lipschitz continuous, with flow $\varphi$
Orbit $O(x)$ for some $x \in D$

  1. Homoclinic orbit if $\exists$ equilibrium $x^{*} \in D \backslash{x}$ s.t

    \[\lim_{t\to\infty}\varphi(t,x) = x^{\ast} \text{ and } \lim_{t\to -\infty}\varphi(t,x) = x^{\ast}\]
  2. Heteroclinic orbit if $\exists$ 2 distinct equilibria $x_1^* \neq x_2^*$ s.t

    \[\lim_{t\to\infty}\varphi(t,x) = x_1^* \text{ and } \lim_{t\to -\infty}\varphi(t,x) = x_2^*\]

Theorem 7. (Stability of linear systems

Consider autonomous linear system, $\dot{x} = Ax, A \in \mathbb{R}^{d\times d}$
Have trivial equilibrium $x^{\ast} = 0$

  1. stable $\iff$
    • $Re(\rho) \leq 0\ \forall \rho$ e.vals of $A$
    • e.val $\rho$ semi-simple $\forall$ e.vals $\rho$ of $A$ with $Re(\rho) =0$
  2. exponentially stable $\iff Re(\rho) < 0\ \forall$ e.vals $\rho$ of $A$

Hyperbolicity

Definition 17.

$A \in \mathbb{R}^{d\times d}$ hyperbolic if $Re(\lambda) \neq 0\ \forall \lambda$ e.vals of $A$

Equilibrium $x^{\ast}$ of differential equation $\dot{x} = f(x)\ f:D\subset \mathbb{R}^d \to \mathbb{R}^d$ continuouslydifferentiable, is hyperbolic if matrix $f’(x^{\ast}) \in \mathbb{R}^{d\times d}$ hyperbolic.

Lemma 4.9 - Gronwall Lemma
Consider continuous function $u:[a,b] \to \mathbb{R},$ let $c,d \geq 0$
Assume $u$ satisfies implicit inequality

\[0 \leq u(t) \leq c + d\int_{a}^{t}u(s) ds \quad \forall t \in [a,b]\]

Theorem 8. (Linearised stability)

$\dot{x} = f(x)\ f:\underbrace{D \subset \mathbb{R}^d}_{\text{open}}\to \mathbb{R}^d$ continuously differentiable.

Assume $x^{\ast}$ equilibrium of above s.t $\forall$ e.vals $\lambda \in \mathbb{C}$ of linearisation of $f’(x^{\ast})\in \mathbb{R}^{d\times d}$ we have $Re(\lambda) < 0 \implies x^{\ast}$ is exponentially stable.

Stable and unstable sets, invariant sets

Definition 18. (Stable + unstable set)

$\dot{x} = f(x)\ f:\underbrace{D \subset \mathbb{R}^d}_{\text{open}}\to \mathbb{R}^d$ locally lipschitz continuous, with flow $\varphi$ and equilibria $x^{\ast}$

Stable set of $x^{\ast}$

\[W^{s}(x^{\ast}) = \{ x \in D: \lim_{t\to\infty} \varphi(t,x) = x^{\ast}\}\]

Unstable set of $x^{\ast}$

\[W^{u}(x^{\ast}) = \{ x \in D: \lim_{t\to-\infty} \varphi(t,x) = x^{\ast}\}\]

Definition 19. (Invariance)

$\dot{x} = f(x)\ f:\underbrace{D \subset \mathbb{R}^d}_{\text{open}}\to \mathbb{R}^d$ locally lipschitz continuous..

  1. positively invariant if $\forall x \in M, O^+(x) \subset M$

  2. negatively invariant if $\forall x \in M, O^-(x) \subset M$

  3. invariant if $\forall x\in M, O(x) \subset M$

Limit Sets

Definition 20. (Omega and alpha limit sets)

$\dot{x} = f(x)\ f:\underbrace{D \subset \mathbb{R}^d}_{\text{open}}\to \mathbb{R}^d$ locally lipschitz continuous, with flow $\varphi, x\in D$

  1. $x_w \in D$ an omega limit point of $x$
    If $\exists$ sequence ${ t_n }{n\in\mathbb{N}}$ s.t $\lim{n\to \infty} t_n = \infty$ and

    \[x_\omega = \lim_{n\to\infty}\varphi(t_n,x)\]

    $\omega(x)= {$ all omega limit points of $x}$

  2. $x_{\alpha}\in D$ an alpha limit point of $x$
    if $\exists$ sequence ${t_n}{n\in\mathbb{N}}$ s.t $\lim{n\to\infty}t_n = -\infty$ and

    \[x_{\alpha} = \lim_{n\to\infty}\varphi(t_n,x)\]

    $\alpha(x) = {$ all alpha limit points of $x}$

Proposition 4.19 - (Alternative characterisation of limit sets)
$\varphi$ flow of differential from above $x\in D$

\[\omega(x) = \bigcap_{t\geq 0}\overline{O^{+}(\varphi(t,x))}\] \[\alpha(x) = \bigcup_{t\leq 0}\overline{O^{-}(\varphi(t,x))}\]

Proposition 4.21 - (properties of $\omega,\alpha$ limit sets)
$\dot{x} = f(x)\ f:\underbrace{D \subset \mathbb{R}^d}_{\text{open}}\to \mathbb{R}^d$ locally lipschitz continuous, $x\in D$

  1. $\omega(x)$ invariant
    if $O^+(x)$ bounded and $\overline{O^+(x)} \subset D \implies \omega(x) \neq \emptyset$ compact

  2. $\alpha(x)$ invariant if $O^{-}(x)$ bounded and $\overline{O^{-}(x)} \subset D \implies \alpha(x) \neq \emptyset$ compact

Lyapunov functions

Definition 21. (Orbital derivatives)

$\dot{x} = f(x)\ f:\underbrace{D \subset \mathbb{R}^d}_{\text{open}}\to \mathbb{R}^d$ locally lipschitz continuous
$V:D\to \mathbb{R}$ continuosly differentiable function.
Define orbital derivative $\dot{V}$ of $V$

\[\dot{V}(x) := V'(x)\cdot f(x) = \sum_{i=1}^{d}\frac{\partial V}{\partial x_i}(x) f_{i}(x)\]

$V’(x) \in \mathbb{R}^{1\times d}$ the gradient of $V$ at $x \in D$
$\dot{V}$ describes derivative of $V$ along solution $\mu:I \to D$ of $\dot{x} = f(x)$

Definition 22. (Lyapunov functions)

$\dot{x} = f(x)\ f:\underbrace{D \subset \mathbb{R}^d}_{\text{open}}\to \mathbb{R}^d$ Locally Lipschitz continuous.
$V: D \to \mathbb{R}$ continuously differentiable function
$V$ a Lyapunov function if $\dot{V}(X) \leq 0\ \forall x \in D$

Remark.
Lyapunov function decrease along solutions

\[V(\varphi(t,x)) \leq V(x) \ \forall t \in [0,\sup J_{max}(x))\]

Proposition 4.25. - (Sublevel sets of Lyapunov functions are positively invariant)

$\dot{x} = f(x)\ f:\underbrace{D \subset \mathbb{R}^d}_{\text{open}}\to \mathbb{R}^d$

Locally Lipschitz continuous, with Lyapunov function $V:D\to\mathbb{R}$ Any sublevel set of form

\[S_{c} := \{ x\in D: V(x) \leq c\},\ c\in \mathbb{R}\]

is positively invariant

Theorem 9. (Lyapunov’s direct method for stability)

$\dot{x} = f(x)\ f:\underbrace{D \subset \mathbb{R}^d}_{\text{open}}\to \mathbb{R}^d$ Locally Lipschitz continuous, $x^{\ast}$ an equilibria and $V:D\to \mathbb{R}$ lyapunov funtion s.t

\[V(x^{\ast}) = 0, V(x) >0 \ \forall x \in D\backslash\{x^{\ast}\} \implies x^{\ast} \text{ stable }\]

Theorem 10. (La Salle’s invariance principal)

$\dot{x} = f(x)\ f:\underbrace{D \subset \mathbb{R}^d}_{\text{open}}\to \mathbb{R}^d$ Locally Lipschitz continuous, with Lyapunov function $V:D\to\mathbb{R}$

\[\omega(x) \subset \{ y \in D: \dot{V}(y) = 0\} \ \forall x \in D\]

Corollary 4.30 - (Reformation of La Salle’s invariance principle)
$\dot{x} = f(x)\ f:\underbrace{D \subset \mathbb{R}^d}_{\text{open}}\to \mathbb{R}^d$ Locally Lipschitz continuous, with Lyapunov function $V:D\to\mathbb{R}$

\[\forall x \in D \omega(x) \subset \underbrace{\text{ largest invariant subset of } \{y \in D:\dot{V}(y) = 0\}}_{= \bigcup \text{ invariant subsets of } \{y \in D:\dot{V}(y) = 0\}}\]

Theorem 11. (Lyapunov’s direct method for asymptotic stability)

$\dot{x} = f(x)\ f:\underbrace{D \subset \mathbb{R}^d}_{\text{open}}\to \mathbb{R}^d$ Locally Lipschitz continuous, $x^{\ast} \in D, V:D\to\mathbb{R}$ Lyapunov function s.t

\[\begin{aligned} V(x^{\ast}) =0 &\text{ and } V(x) > 0\ \forall x \in D\backslash\{x^{\ast}\}\\ \dot{V}(x^{\ast}) =0 &\text{ and } \dot{V}(x) < 0\ \forall x \in D\backslash\{x^{\ast}\}\end{aligned}\]

$\implies x^{\ast}$ asymptotically stable

Corollary 4.33 - (Sublevel sets of Lyapunov functions are subsets of domain of attraction)

$\dot{x} = f(x)\ f:\underbrace{D \subset \mathbb{R}^d}_{\text{open}}\to \mathbb{R}^d$ Locally Lipschitz continuous, $x^{\ast} \in D, V:D\to\mathbb{R}$ Lyapunov function
Consider sublevel sets of Lyapunov function $V$

\[S_{c} := \{x \in D: V(x) \leq c\} \ \forall c>0\]

$\implies S_c$ subset of domain of attraction $W^{s}(x^{\ast})$ if $S_c \subset D$ compact

Poincaré-Bendixson Theorem

Theorem 12. (Poincare-Bendixson Theorem

$\dot{x} = f(x)\ f:\underbrace{D \subset \mathbb{R}^2}_{\text{open}}\to \mathbb{R}^2$ with flow $\varphi$ continuously differentiable.
Assume for some $x\in D, O^{+}(x) \subset K$ compact $\subset D$
$K$ containing not more than finitely many equilibria.
One of the following 3 hold for $\omega(x)$

  1. $\omega(x)$ a singleton, consisting of an equilibrium

  2. $\omega(x)$ a periodic orbit

  3. $\omega(x)$ consists of equilibria + non-closed orbits
    non-closed orbits in $\omega(x)$ converge forward and backward in time to equilibria in $\omega(x)$
    $\implies$ either homoclinic or heteroclinic orbits.

Corollary 4.35 - (Existence of a periodic orbit)
$\dot{x} = f(x)\ f:\underbrace{D \subset \mathbb{R}^2}_{\text{open}}\to \mathbb{R}^2$ continuously differentiable with flow $\varphi$.
Assume for $x\in D$, $O^{+}(x) \subset K$ compact $\subset D$
$D$ not containing an equilibrium $\implies \omega(x)$ periodic orbit.